IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/57146.html
   My bibliography  Save this paper

Wild binary segmentation for multiple change-point detection

Author

Listed:
  • Fryzlewicz, Piotr

Abstract

We propose a new technique, called Wild Binary Segmentation (WBS), for consistent estimation of the number and locations of multiple change-points in data. We assume that the number of change-points can increase to infinity with the sample size. Due to a certain random localisation mechanism, WBS works even for very short spacings between the change-points and/or very small jump magnitudes, unlike standard Binary Segmentation. On the other hand, despite its use of localisation, WBS does not require the choice of a window or span parameter, and does not lead to a significant increase in computational complexity. WBS is also easy to code. We propose two stopping criteria for WBS: one based on thresholding and the other based on what we term the “strengthened Schwarz Information Criterion”. We provide default recommended values of the parameters of the procedure and show that it offers very good practical performance in comparison with the state of the art. The WBS methodology is implemented in the R package wbs, available on CRAN. In addition, we provide a new proof of consistency of Binary Segmentation with improved rates of convergence, as well as a corresponding result for WBS.

Suggested Citation

  • Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:57146
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/57146/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fryzlewicz, Piotr, 2007. "Unbalanced Haar technique for nonparametric function estimation," LSE Research Online Documents on Economics 25216, London School of Economics and Political Science, LSE Library.
    2. Fryzlewicz, Piotr, 2007. "Unbalanced Haar Technique for Nonparametric Function Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1318-1327, December.
    3. P. Fryzlewicz & S. Subba Rao, 2014. "Multiple-change-point detection for auto-regressive conditional heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(5), pages 903-924, November.
    4. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
    5. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schroeder, Anna Louise & Fryzlewicz, Piotr, 2013. "Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery," LSE Research Online Documents on Economics 54934, London School of Economics and Political Science, LSE Library.
    2. Young Hoon Lee, 2009. "The Impact of Postseason Restructuring on the Competitive Balance and Fan Demand in Major League Baseball," Journal of Sports Economics, , vol. 10(3), pages 219-235, June.
    3. Hayley Jang & Young Hoon Lee & Rodney Fort, 2019. "Winning In Professional Team Sports: Historical Moments," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 103-120, January.
    4. Devi, P. Indira & Shanmugam, K.R. & Jayasree, M.G., 2012. "Compensating Wages for Occupational Risks of Farm Workers in India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 67(2), pages 1-12.
    5. Gil-Alana, Luis A. & Dadgar, Yadollah & Nazari, Rouhollah, 2020. "An analysis of the OPEC and non-OPEC position in the World Oil Market: A fractionally integrated approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    6. Altansukh, Gantungalag & Becker, Ralf & Bratsiotis, George J. & Osborn, Denise R., 2017. "What is the Globalisation of Inflation?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 74, pages 1-27.
    7. Kayhan, Selim & Adiguzel, Uğur & Bayat, Tayfur & Lebe, Fuat, 2010. "Causality Relationship between Real GDP and Electricity Consumption in Romania (2001-2010)," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 169-183, December.
    8. Hervé Le Bihan, 2004. "Tests de ruptures : une application au PIB tendanciel français," Économie et Prévision, Programme National Persée, vol. 163(2), pages 133-154.
    9. Mohitosh Kejriwal, 2020. "A Robust Sequential Procedure for Estimating the Number of Structural Changes in Persistence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(3), pages 669-685, June.
    10. Timmermans, Catherine & Delsol, Laurent & von Sachs, Rainer, 2013. "Using Bagidis in nonparametric functional data analysis: Predicting from curves with sharp local features," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 421-444.
    11. Davis, Richard A. & Hancock, Stacey A. & Yao, Yi-Ching, 2016. "On consistency of minimum description length model selection for piecewise autoregressions," Journal of Econometrics, Elsevier, vol. 194(2), pages 360-368.
    12. Jamel JOUINI & Mohamed BOUTAHAR, 2007. "wrong estimation of the true number of shifts in structural break models: Theoretical and numerical evidence," Economics Bulletin, AccessEcon, vol. 3(3), pages 1-10.
    13. Perron, Pierre, 2020. "L'estimation de modèles avec changements structurels multiples," L'Actualité Economique, Société Canadienne de Science Economique, vol. 96(4), pages 789-837, Décembre.
    14. McGinnity, K. & Varbanov, R. & Chicken, E., 2017. "Cross-validated wavelet block thresholding for non-Gaussian errors," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 127-137.
    15. Kurozumi, Eiji & Tuvaandorj, Purevdorj, 2011. "Model selection criteria in multivariate models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 164(2), pages 218-238, October.
    16. Hui Hong & Zhicun Bian & Chien-Chiang Lee, 2021. "COVID-19 and instability of stock market performance: evidence from the U.S," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-18, December.
    17. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
    18. Naoshi Tsuchida & Toshiaki Watanabe & Toshinao Yoshiba, 2016. "The Intraday Market Liquidity of Japanese Government Bond Futures," IMES Discussion Paper Series 16-E-07, Institute for Monetary and Economic Studies, Bank of Japan.
    19. Bajo-Rubio, Oscar & Diaz-Roldan, Carmen & Esteve, Vicente, 2007. "Change of regime and Phillips curve stability: The case of Spain, 1964-2002," Journal of Policy Modeling, Elsevier, vol. 29(3), pages 453-462.
    20. Giorgio Canarella & Rangan Gupta & Stephen M. Miller & Stephen K. Pollard, 2019. "Unemployment rate hysteresis and the great recession: exploring the metropolitan evidence," Empirical Economics, Springer, vol. 56(1), pages 61-79, January.

    More about this item

    Keywords

    multiple change-points; change-point detection; binary segmentation; randomized algorithms; thresholding; Bayesian information criterion;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:57146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.