Strong convergence of sums of [alpha]-mixing random variables with applications to density estimation
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yakowitz, Sidney, 1989. "Nonparametric density and regression estimation for Markov sequences without mixing assumptions," Journal of Multivariate Analysis, Elsevier, vol. 30(1), pages 124-136, July.
- P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
- George Roussas, 1969. "Nonparametric estimation in Markov processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 73-87, December.
- Vieu, Philippe, 1991. "Quadratic errors for nonparametric estimates under dependence," Journal of Multivariate Analysis, Elsevier, vol. 39(2), pages 324-347, November.
- Tran, Lanh Tat, 1990. "Kernel density estimation under dependence," Statistics & Probability Letters, Elsevier, vol. 10(3), pages 193-201, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liang, Han-Ying & Peng, Liang, 2010. "Asymptotic normality and Berry-Esseen results for conditional density estimator with censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1043-1054, May.
- Christian Brownlees & Gu{dh}mundur Stef'an Gu{dh}mundsson, 2021. "Performance of Empirical Risk Minimization for Linear Regression with Dependent Data," Papers 2104.12127, arXiv.org, revised May 2023.
- Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
- Kanaya, Shin, 2017.
"Uniform Convergence Rates Of Kernel-Based Nonparametric Estimators For Continuous Time Diffusion Processes: A Damping Function Approach,"
Econometric Theory, Cambridge University Press, vol. 33(4), pages 874-914, August.
- Shin Kanaya, 2015. "Uniform Convergence Rates of Kernel-Based Nonparametric Estimators for Continuous Time Diffusion Processes: A Damping Function Approach," CREATES Research Papers 2015-50, Department of Economics and Business Economics, Aarhus University.
- Kanaya, Shin, 2017.
"Convergence Rates Of Sums Of Α-Mixing Triangular Arrays: With An Application To Nonparametric Drift Function Estimation Of Continuous-Time Processes,"
Econometric Theory, Cambridge University Press, vol. 33(5), pages 1121-1153, October.
- Shin Kanaya, 2016. "Convergence rates of sums of a-mixing triangular arrays: with an application to non-parametric drift function estimation of continuous-time processes," CREATES Research Papers 2016-24, Department of Economics and Business Economics, Aarhus University.
- Kanaya, Shin, 2016. "Convergence rates of sums of α-mixing triangular arrays : with an application to non-parametric drift function estimation of continuous-time processes," Discussion Paper Series 646, Institute of Economic Research, Hitotsubashi University.
- Shin Kanaya, 2016. "Convergence rates of sums of α-mixing triangular arrays: with an application to non-parametric drift function estimation of continuous-time processes," KIER Working Papers 947, Kyoto University, Institute of Economic Research.
- Han-Ying Liang & Jong-Il Baek, 2016. "Asymptotic normality of conditional density estimation with left-truncated and dependent data," Statistical Papers, Springer, vol. 57(1), pages 1-20, March.
- Koo, Bonsoo & Linton, Oliver, 2012. "Estimation of semiparametric locally stationary diffusion models," Journal of Econometrics, Elsevier, vol. 170(1), pages 210-233.
- Maria Mohr & Natalie Neumeyer, 2021. "Nonparametric volatility change detection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 529-548, June.
- Maria Mohr & Leonie Selk, 2020. "Estimating change points in nonparametric time series regression models," Statistical Papers, Springer, vol. 61(4), pages 1437-1463, August.
- Masry, Elias, 2003. "Local polynomial fitting under association," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 330-359, August.
- Liebscher, Eckhard, 2003. "Strong convergence of estimators in nonlinear autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 247-261, February.
- Liang, Han-Ying & de Uña-Álvarez, Jacobo, 2011. "Wavelet estimation of conditional density with truncated, censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 448-467, March.
- Liang Han-Ying & Mammitzsch Volker & Steinebach Josef, 2005. "Nonlinear wavelet density and hazard rate estimation for censored data under dependent observations," Statistics & Risk Modeling, De Gruyter, vol. 23(3), pages 161-180, March.
- Leonie Selk & Natalie Neumeyer, 2013. "Testing for a Change of the Innovation Distribution in Nonparametric Autoregression: The Sequential Empirical Process Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 770-788, December.
- Junke Kou & Youming Liu, 2018. "Wavelet regression estimations with strong mixing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 667-688, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liebscher, Eckhard, 1999. "Asymptotic normality of nonparametric estimators under [alpha]-mixing condition," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 243-250, July.
- Liebscher E., 2001. "Estimation Of The Density And The Regression Function Under Mixing Conditions," Statistics & Risk Modeling, De Gruyter, vol. 19(1), pages 9-26, January.
- Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
- Federico M Bandi & Valentina Corradi & Daniel Wilhelm, 2016. "Possibly Nonstationary Cross-Validation," CeMMAP working papers CWP11/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Lacour, Claire, 2008. "Nonparametric estimation of the stationary density and the transition density of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 232-260, February.
- Federico M Bandi & Valentina Corradi & Daniel Wilhelm, 2016. "Possibly Nonstationary Cross-Validation," CeMMAP working papers 11/16, Institute for Fiscal Studies.
- Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
- Hwai-Chung, Ho, 1996. "On central and non-central limit theorems in density estimation for sequences of long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 63(2), pages 153-174, November.
- Cai, Zongwu, 2001. "Weighted Nadaraya-Watson regression estimation," Statistics & Probability Letters, Elsevier, vol. 51(3), pages 307-318, February.
- Bitseki Penda, S. Valère, 2023. "Moderate deviation principles for kernel estimator of invariant density in bifurcating Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 282-314.
- Seok Young Hong & Oliver Linton, 2016.
"Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in finite order,"
CeMMAP working papers
53/16, Institute for Fiscal Studies.
- Seok Young Hong & Oliver Linton, 2016. "Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in?finite order," CeMMAP working papers CWP53/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ichimura, Hidehiko & Todd, Petra E., 2007.
"Implementing Nonparametric and Semiparametric Estimators,"
Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74,
Elsevier.
- Hidehiko Ichimura & Petra E. Todd, 2006. "Implementing Nonparametric and Semiparametric Estimators," CIRJE F-Series CIRJE-F-452, CIRJE, Faculty of Economics, University of Tokyo.
- Martin D. D. Evans & Richard K. Lyons, 2017.
"Time-Varying Liquidity in Foreign Exchange,"
World Scientific Book Chapters, in: Studies in Foreign Exchange Economics, chapter 8, pages 325-361,
World Scientific Publishing Co. Pte. Ltd..
- Evans, Martin D. D. & Lyons, Richard K., 2002. "Time-varying liquidity in foreign exchange," Journal of Monetary Economics, Elsevier, vol. 49(5), pages 1025-1051, July.
- Martin Evans and David Lyons, 2001. "Time-Varying Liquidity in Foreign Exchange," Working Papers gueconwpa~01-01-11, Georgetown University, Department of Economics.
- Battisti, Michele & Gatto, Massimo Del & Parmeter, Christopher F., 2022. "Skill-biased technical change and labor market inefficiency," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
- Dabo-Niang, Sophie & Francq, Christian & Zakoian, Jean-Michel, 2009. "Combining parametric and nonparametric approaches for more efficient time series prediction," MPRA Paper 16893, University Library of Munich, Germany.
- Richard H. Clarida & Mark P. Taylor, 2003.
"Nonlinear Permanent - Temporary Decompositions in Macroeconomics and Finance,"
Economic Journal, Royal Economic Society, vol. 113(486), pages 125-139, March.
- Clarida, Richard H. & Mark P. Taylor, 2002. "Nonlinear Permanent -Temporary Decompositions in Macroeconomics and Finance," Royal Economic Society Annual Conference 2002 51, Royal Economic Society.
- Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000.
"Nonparametric estimation of American options' exercise boundaries and call prices,"
Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1829-1857, October.
- Mark Broadie & Jérôme Detemple & Eric Ghysels & Olivier Torrès, 1996. "Nonparametric Estimation of American Options Exercise Boundaries and Call Prices," CIRANO Working Papers 96s-24, CIRANO.
- Bonsoo Koo & Oliver Linton, 2010.
"Semiparametric Estimation of Locally Stationary Diffusion Models,"
STICERD - Econometrics Paper Series
551, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Koo, Bonsoo & Linton, Oliver, 2010. "Semiparametric estimation of locally stationary diffusion models," LSE Research Online Documents on Economics 58186, London School of Economics and Political Science, LSE Library.
- Zhijie Xiao & Oliver Linton & Raymond J. Carroll & E. Mammen, 2002.
"More Efficient Kernel Estimation in Nonparametric Regression with Autocorrelated Errors,"
Cowles Foundation Discussion Papers
1375, Cowles Foundation for Research in Economics, Yale University.
- Raymond J Carroll & Oliver Linton & Enno Mammen & Zhijie Xiao, 2002. "More Efficient Kernel Estimation in Nonparametric Regression with Autocorrelated Errors," STICERD - Econometrics Paper Series 435, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Carroll, Raymond J & Linton, Oliver & Mammen, Enno & Xiao, Zhijie, 2002. "More efficient kernel estimation in nonparametric regression with autocorrelated errors," LSE Research Online Documents on Economics 2017, London School of Economics and Political Science, LSE Library.
- Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010.
"Combining Nonparametric and Optimal Linear Time Series Predictions,"
Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
- Sophie DABO-NIANG & Christian FRANCQ & Jean-Michel ZAKOIAN, 2009. "Combining Nonparametric and Optimal Linear Time Series Predictions," Working Papers 2009-18, Center for Research in Economics and Statistics.
More about this item
Keywords
Strong convergence Triangular array; [alpha]-mixing; Kernel density estimators;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:65:y:1996:i:1:p:69-80. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.