IDEAS home Printed from https://ideas.repec.org/p/mil/wpdepa/2009-49.html
   My bibliography  Save this paper

Estimation for the change point of the volatility in a stochastic differential equation

Author

Listed:
  • Stefano Maria IACUS
  • Nakahiro YOSHIDA

Abstract

We consider a multidimensional Ito process Y=(Y_t), t in [0,T], with some unknown drift coefficient process b_t and volatility coefficient sigma(X_t,theta) with covariate process X=(X_t), t in[0,T], the function sigma(x,theta) being known up to theta in Theta. For this model we consider a change point problem for the parameter theta in the volatility component. The change is supposed to occur at some point t* in (0,T). Given discrete time observations from the process (X,Y), we propose quasi-maximum likelihood estimation of the change point. We present the rate of convergence of the change point estimator and the limit thereoms of aymptotically mixed type.

Suggested Citation

  • Stefano Maria IACUS & Nakahiro YOSHIDA, 2009. "Estimation for the change point of the volatility in a stochastic differential equation," Departmental Working Papers 2009-49, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
  • Handle: RePEc:mil:wpdepa:2009-49
    as

    Download full text from publisher

    File URL: http://wp.demm.unimi.it/files/wp/2009/DEMM-2009_049wp.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai, 1994. "Least Squares Estimation Of A Shift In Linear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 453-472, September.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Sangyeol Lee & Yoichi Nishiyama & Nakahiro Yoshida, 2006. "Test for Parameter Change in Diffusion Processes by Cusum Statistics Based on One-step Estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 211-222, June.
    4. Shixin, Gan, 1997. "The Hájek-Rényi inequality for Banach space valued martingales and the p smoothness of Banach spaces," Statistics & Probability Letters, Elsevier, vol. 32(3), pages 245-248, March.
    5. Sangyeol Lee & Jeongcheol Ha & Okyoung Na & Seongryong Na, 2003. "The Cusum Test for Parameter Change in Time Series Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(4), pages 781-796, December.
    6. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    7. Junmo Song & Sangyeol Lee, 2009. "Test for parameter change in discretely observed diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 12(2), pages 165-183, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano M. Iacus & Nakahiro Yoshida, 2010. "Numerical Analysis of Volatility Change Point Estimators for Discretely Sampled Stochastic Differential Equations," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(1‐2), pages 107-127, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iacus, Stefano M. & Yoshida, Nakahiro, 2012. "Estimation for the change point of volatility in a stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1068-1092.
    2. Stefano M. Iacus & Nakahiro Yoshida, 2010. "Numerical Analysis of Volatility Change Point Estimators for Discretely Sampled Stochastic Differential Equations," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(1‐2), pages 107-127, February.
    3. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    4. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    5. Junmo Song & Sangyeol Lee, 2009. "Test for parameter change in discretely observed diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 12(2), pages 165-183, June.
    6. Jesús Clemente & María Dolores Gadea & Antonio Montañés & Marcelo Reyes, 2017. "Structural Breaks, Inflation and Interest Rates: Evidence from the G7 Countries," Econometrics, MDPI, vol. 5(1), pages 1-17, February.
    7. KUROZUMI, Eiji & 黒住, 英司, 2017. "Confidence Sets for the Date of a Mean Shift at the End of a Sample," Discussion Papers 2017-06, Graduate School of Economics, Hitotsubashi University.
    8. Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023. "Time series analysis of COVID-19 infection curve: A change-point perspective," Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
    9. Seong Yeon Chang & Pierre Perron, 2016. "Inference on a Structural Break in Trend with Fractionally Integrated Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 555-574, July.
    10. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
    11. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
    12. Mutafoglu, Takvor H. & Tokat, Ekin & Tokat, Hakki A., 2012. "Forecasting precious metal price movements using trader positions," Resources Policy, Elsevier, vol. 37(3), pages 273-280.
    13. Andrew T. Levin & Jeremy M. Piger, 2003. "Is inflation persistence intrinsic in industrial economies?," Working Papers 2002-023, Federal Reserve Bank of St. Louis.
    14. Kim, J.W. & Leatham, D.J. & Bessler, D.A., 2007. "REITs' dynamics under structural change with unknown break points," Journal of Housing Economics, Elsevier, vol. 16(1), pages 37-58, March.
    15. Mohitosh Kejriwal & Claude Lopez, 2013. "Unit Roots, Level Shifts, and Trend Breaks in Per Capita Output: A Robust Evaluation," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 892-927, November.
    16. Link, Albert N. & van Hasselt, Martijn, 2019. "On the transfer of technology from universities: The impact of the Bayh–Dole Act of 1980 on the institutionalization of university research," European Economic Review, Elsevier, vol. 119(C), pages 472-481.
    17. Perron, Pierre & Zhu, Xiaokang, 2005. "Structural breaks with deterministic and stochastic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 65-119.
    18. Yaein Baek, 2018. "Estimation of a Structural Break Point in Linear Regression Models," Papers 1811.03720, arXiv.org, revised Jun 2020.
    19. Alessandro De Gregorio & Stefano Iacus, 2007. "Change point estimation for the telegraph process observed at discrete times," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1053, Universitá degli Studi di Milano.
    20. Yozo Tonaki & Yusuke Kaino & Masayuki Uchida, 2022. "Adaptive tests for parameter changes in ergodic diffusion processes from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 397-430, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2009-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEMM Working Papers (email available below). General contact details of provider: https://edirc.repec.org/data/damilit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.