IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i2d10.1007_s00362-017-0952-2.html
   My bibliography  Save this article

Nonparametric kernel estimation of CVaR under $$\alpha $$α-mixing sequences

Author

Listed:
  • Zhongde Luo

    (Baise University)

Abstract

Conditional Value-at-Risk (CVaR) is an increasingly popular coherent risk measure in financial risk management. In this paper, a new nonparametric kernel estimator of CVaR is established, and a Bahadur type expansion of the estimator is also given under $$\alpha $$α-mixing sequences. Furthermore, the mean, variance, mean square error (MSE) and uniformly asymptotic normality of the new estimator are discussed, optimal bandwidths are obtained as well. In order to better illustrate performances of the new CVaR estimator, we conduct numerical simulations under some $$\alpha $$α-mixing sequences and a GARCH model, and discover that the new CVaR estimator is smoother and more accurate than estimators proposed by other scholars because of the bias and MSE of the new estimator are smaller. Finally, we use the new estimator to analyze the daily log-loss of real financial series.

Suggested Citation

  • Zhongde Luo, 2020. "Nonparametric kernel estimation of CVaR under $$\alpha $$α-mixing sequences," Statistical Papers, Springer, vol. 61(2), pages 615-643, April.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:2:d:10.1007_s00362-017-0952-2
    DOI: 10.1007/s00362-017-0952-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-017-0952-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-017-0952-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    2. Trindade, A. Alexandre & Uryasev, Stan & Shapiro, Alexander & Zrazhevsky, Grigory, 2007. "Financial prediction with constrained tail risk," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3524-3538, November.
    3. Mokkadem, Abdelkader, 1988. "Mixing properties of ARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 29(2), pages 309-315, September.
    4. A. Ben-Tal & M. Teboulle, 1987. "Penalty Functions and Duality in Stochastic Programming Via (phi)-Divergence Functionals," Mathematics of Operations Research, INFORMS, vol. 12(2), pages 224-240, May.
    5. Franco Peracchi & Andrei V. Tanase, 2008. "On estimating the conditional expected shortfall," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 471-493, September.
    6. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    7. Song Xi Chen, 2005. "Nonparametric Inference of Value-at-Risk for Dependent Financial Returns," Journal of Financial Econometrics, Oxford University Press, vol. 3(2), pages 227-255.
    8. Zhongde Luo & Shide Ou, 2017. "The almost sure convergence rate of the estimator of optimized certainty equivalent risk measure under α-mixing sequences," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(16), pages 8166-8177, August.
    9. Taras Bodnar & Wolfgang Schmid & Taras Zabolotskyy, 2013. "Asymptotic behavior of the estimated weights and of the estimated performance measures of the minimum VaR and the minimum CVaR optimal portfolios for dependent data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(8), pages 1105-1134, November.
    10. Leorato, Samantha & Peracchi, Franco & Tanase, Andrei V., 2012. "Asymptotically efficient estimation of the conditional expected shortfall," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 768-784.
    11. Yang, Shanchao, 2003. "Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples," Statistics & Probability Letters, Elsevier, vol. 62(2), pages 101-110, April.
    12. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    13. Takeda, Akiko & Kanamori, Takafumi, 2009. "A robust approach based on conditional value-at-risk measure to statistical learning problems," European Journal of Operational Research, Elsevier, vol. 198(1), pages 287-296, October.
    14. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
    15. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    16. Kengo Kato, 2012. "Weighted Nadaraya--Watson Estimation of Conditional Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 10(2), pages 265-291, 2012 15.
    17. Song Xi Chen, 2008. "Nonparametric Estimation of Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(1), pages 87-107, Winter.
    18. Aharon Ben-Tal & Marc Teboulle, 1986. "Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming," Management Science, INFORMS, vol. 32(11), pages 1445-1466, November.
    19. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    20. M. Rueda & A. Arcos, 2004. "Improving ratio-type quantile estimates in a finite population," Statistical Papers, Springer, vol. 45(2), pages 231-248, April.
    21. Lihong Wang, 2010. "Kernel type smoothed quantile estimation under long memory," Statistical Papers, Springer, vol. 51(1), pages 57-67, January.
    22. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Yongming & Li Naiyi & Luo Zhongde & Xing Guodong, 2024. "Asymptotic Behaviors of the VaR and CVaR Estimates for Widely Orthant Dependent Sequences," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-22, September.
    2. Yi Wu & Xuejun Wang & Aiting Shen, 2021. "Strong convergence properties for weighted sums of m-asymptotic negatively associated random variables and statistical applications," Statistical Papers, Springer, vol. 62(5), pages 2169-2194, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    2. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    3. Rockafellar, R.T. & Royset, J.O. & Miranda, S.I., 2014. "Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 234(1), pages 140-154.
    4. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    5. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    6. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    7. Daniel Bartl & Ludovic Tangpi, 2020. "Non-asymptotic convergence rates for the plug-in estimation of risk measures," Papers 2003.10479, arXiv.org, revised Oct 2022.
    8. Yan Fang & Jian Li & Yinglin Liu & Yunfan Zhao, 2023. "Semiparametric estimation of expected shortfall and its application in finance," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 835-851, July.
    9. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
    10. Wang, Chuan-Sheng & Zhao, Zhibiao, 2016. "Conditional Value-at-Risk: Semiparametric estimation and inference," Journal of Econometrics, Elsevier, vol. 195(1), pages 86-103.
    11. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    12. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    13. Laeven, R.J.A. & Stadje, M.A., 2011. "Entropy Coherent and Entropy Convex Measures of Risk," Discussion Paper 2011-031, Tilburg University, Center for Economic Research.
    14. Brandtner, Mario & Kürsten, Wolfgang, 2015. "Decision making with Expected Shortfall and spectral risk measures: The problem of comparative risk aversion," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 268-280.
    15. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.
    16. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.
    17. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    18. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    19. Jinwook Lee & András Prékopa, 2015. "Decision-making from a risk assessment perspective for Corporate Mergers and Acquisitions," Computational Management Science, Springer, vol. 12(2), pages 243-266, April.
    20. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:2:d:10.1007_s00362-017-0952-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.