IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v31y2007i11p3524-3538.html
   My bibliography  Save this article

Financial prediction with constrained tail risk

Author

Listed:
  • Trindade, A. Alexandre
  • Uryasev, Stan
  • Shapiro, Alexander
  • Zrazhevsky, Grigory

Abstract

No abstract is available for this item.

Suggested Citation

  • Trindade, A. Alexandre & Uryasev, Stan & Shapiro, Alexander & Zrazhevsky, Grigory, 2007. "Financial prediction with constrained tail risk," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3524-3538, November.
  • Handle: RePEc:eee:jbfina:v:31:y:2007:i:11:p:3524-3538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(07)00139-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.
    2. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    3. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    4. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    5. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    6. Trindade, A. Alexandre & Zhu, Yun, 2007. "Approximating the distributions of estimators of financial risk under an asymmetric Laplace law," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3433-3447, April.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Rockafellar, R. Tyrrell & Uryasev, Stan & Zabarankin, Michael, 2006. "Master funds in portfolio analysis with general deviation measures," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 743-778, February.
    10. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    2. Naeem, Muhammad Abubakr & Shahzad, Mohammad Rahim & Karim, Sitara & Assaf, Rima, 2023. "Tail risk transmission in technology-driven markets," Global Finance Journal, Elsevier, vol. 57(C).
    3. Alexandre Carbonneau & Fr'ed'eric Godin, 2020. "Equal Risk Pricing of Derivatives with Deep Hedging," Papers 2002.08492, arXiv.org, revised Jun 2020.
    4. R. Tyrrell Rockafellar & Stan Uryasev & Michael Zabarankin, 2008. "Risk Tuning with Generalized Linear Regression," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 712-729, August.
    5. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    6. Roger W. Barnard & Kent Pearce & A. Alexandre Trindade, 2018. "When is tail mean estimation more efficient than tail median? Answers and implications for quantitative risk management," Annals of Operations Research, Springer, vol. 262(1), pages 47-65, March.
    7. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    8. Yi Wu & Xuejun Wang & Aiting Shen, 2021. "Strong convergence properties for weighted sums of m-asymptotic negatively associated random variables and statistical applications," Statistical Papers, Springer, vol. 62(5), pages 2169-2194, October.
    9. Li Yongming & Li Naiyi & Luo Zhongde & Xing Guodong, 2024. "Asymptotic Behaviors of the VaR and CVaR Estimates for Widely Orthant Dependent Sequences," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-22, September.
    10. L. Jeff Hong & Guangwu Liu, 2009. "Simulating Sensitivities of Conditional Value at Risk," Management Science, INFORMS, vol. 55(2), pages 281-293, February.
    11. Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.
    12. Jinyu Zhou & Jigao Yan & Dongya Cheng, 2024. "Strong consistency of tail value-at-risk estimator and corresponding general results under widely orthant dependent samples," Statistical Papers, Springer, vol. 65(6), pages 3357-3394, August.
    13. Rockafellar, R.T. & Royset, J.O. & Miranda, S.I., 2014. "Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 234(1), pages 140-154.
    14. David E. Allen & Robert Powell, 2009. "Transitional credit modelling and its relationship to market value at risk: an Australian sectoral perspective," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 49(3), pages 425-444, September.
    15. Zhongde Luo, 2020. "Nonparametric kernel estimation of CVaR under $$\alpha $$α-mixing sequences," Statistical Papers, Springer, vol. 61(2), pages 615-643, April.
    16. Massimiliano Kaucic & Roberto Daris, 2015. "Multi-Objective Stochastic Optimization Programs for a Non-Life Insurance Company under Solvency Constraints," Risks, MDPI, vol. 3(3), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Tyrrell Rockafellar & Stan Uryasev & Michael Zabarankin, 2008. "Risk Tuning with Generalized Linear Regression," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 712-729, August.
    2. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    3. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    4. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    5. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
    6. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    7. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    8. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    9. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    10. Leorato, Samantha & Peracchi, Franco & Tanase, Andrei V., 2012. "Asymptotically efficient estimation of the conditional expected shortfall," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 768-784.
    11. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    12. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    13. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2018. "Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity," European Journal of Operational Research, Elsevier, vol. 264(2), pages 707-716.
    14. Martin Herdegen & Nazem Khan, 2020. "Mean-$\rho$ portfolio selection and $\rho$-arbitrage for coherent risk measures," Papers 2009.05498, arXiv.org, revised Jul 2021.
    15. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    16. Franco Peracchi & Andrei V. Tanase, 2008. "On estimating the conditional expected shortfall," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 471-493, September.
    17. Fu, Tianwen & Zhuang, Xinkai & Hui, Yongchang & Liu, Jia, 2017. "Convex risk measures based on generalized lower deviation and their applications," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 27-37.
    18. Sant’Anna, Leonardo Riegel & Righi, Marcelo Brutti & Müller, Fernanda Maria & Guedes, Pablo Cristini, 2022. "Risk measure index tracking model," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 361-383.
    19. Grechuk, Bogdan & Zabarankin, Michael, 2018. "Direct data-based decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 267(1), pages 200-211.
    20. Rockafellar, R. Tyrrell & Uryasev, Stan & Zabarankin, M., 2007. "Equilibrium with investors using a diversity of deviation measures," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3251-3268, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:31:y:2007:i:11:p:3524-3538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.