IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v76y2013i8p1105-1134.html
   My bibliography  Save this article

Asymptotic behavior of the estimated weights and of the estimated performance measures of the minimum VaR and the minimum CVaR optimal portfolios for dependent data

Author

Listed:
  • Taras Bodnar
  • Wolfgang Schmid
  • Taras Zabolotskyy

Abstract

In this paper we derive the asymptotic distributions of the estimated weights and of estimated performance measures of the minimum value-at-risk portfolio and of the minimum conditional value-at-risk portfolio assuming that the asset returns follow a strictly stationary process. It is proved that the estimated weights as well as the estimated performance measures are asymptotically multivariate normally distributed. We also present an asymptotic test for the weights and a joint test for the characteristics of both portfolios. Moreover, the asymptotic densities of the estimated performance measures are compared with the corresponding exact densities. It is shown that the asymptotic approximation performs well even for the moderate sample size. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Taras Bodnar & Wolfgang Schmid & Taras Zabolotskyy, 2013. "Asymptotic behavior of the estimated weights and of the estimated performance measures of the minimum VaR and the minimum CVaR optimal portfolios for dependent data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(8), pages 1105-1134, November.
  • Handle: RePEc:spr:metrik:v:76:y:2013:i:8:p:1105-1134
    DOI: 10.1007/s00184-013-0432-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-013-0432-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-013-0432-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    2. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    3. Campbell, Rachel & Huisman, Ronald & Koedijk, Kees, 2001. "Optimal portfolio selection in a Value-at-Risk framework," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1789-1804, September.
    4. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    5. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    6. Churlzu Lim & Hanif Sherali & Stan Uryasev, 2010. "Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization," Computational Optimization and Applications, Springer, vol. 46(3), pages 391-415, July.
    7. Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2009. "Jackknife Estimator for Tracking Error Variance of Optimal Portfolios," Management Science, INFORMS, vol. 55(6), pages 990-1002, June.
    8. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    9. Alexander, Gordon J. & Baptista, Alexandre M., 2002. "Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1159-1193, July.
    10. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    11. Benati, Stefano, 2003. "The optimal portfolio problem with coherent risk measure constraints," European Journal of Operational Research, Elsevier, vol. 150(3), pages 572-584, November.
    12. Taras Bodnar & Wolfgang Schmid, 2009. "Econometrical analysis of the sample efficient frontier," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 317-335.
    13. C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
    14. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    15. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    16. Gibbons, Michael R & Ross, Stephen A & Shanken, Jay, 1989. "A Test of the Efficiency of a Given Portfolio," Econometrica, Econometric Society, vol. 57(5), pages 1121-1152, September.
    17. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    18. Mark Britten‐Jones, 1999. "The Sampling Error in Estimates of Mean‐Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, April.
    19. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    20. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    21. Taras Bodnar & Wolfgang Schmid & Taras Zabolotskyy, 2009. "Statistical inference of the efficient frontier for dependent asset returns," Statistical Papers, Springer, vol. 50(3), pages 593-604, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bodnar, Taras & Mazur, Stepan & Podgórski, Krzysztof, 2016. "Singular inverse Wishart distribution and its application to portfolio theory," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 314-326.
    2. Zhongde Luo, 2020. "Nonparametric kernel estimation of CVaR under $$\alpha $$α-mixing sequences," Statistical Papers, Springer, vol. 61(2), pages 615-643, April.
    3. Taras Bodnar & Taras Zabolotskyy, 2017. "How risky is the optimal portfolio which maximizes the Sharpe ratio?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodnar Taras & Schmid Wolfgang & Zabolotskyy Tara, 2012. "Minimum VaR and minimum CVaR optimal portfolios: Estimators, confidence regions, and tests," Statistics & Risk Modeling, De Gruyter, vol. 29(4), pages 281-314, November.
    2. Mårten Gulliksson & Stepan Mazur, 2020. "An Iterative Approach to Ill-Conditioned Optimal Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 773-794, December.
    3. Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2015. "A closed-form solution of the multi-period portfolio choice problem for a quadratic utility function," Annals of Operations Research, Springer, vol. 229(1), pages 121-158, June.
    4. Taras Bodnar & Taras Zabolotskyy, 2017. "How risky is the optimal portfolio which maximizes the Sharpe ratio?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 1-28, January.
    5. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    6. Ryo Kinoshita, 2015. "Asset allocation under higher moments with the GARCH filter," Empirical Economics, Springer, vol. 49(1), pages 235-254, August.
    7. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2013. "On the equivalence of quadratic optimization problems commonly used in portfolio theory," European Journal of Operational Research, Elsevier, vol. 229(3), pages 637-644.
    8. Chavez-Bedoya, Luis & Rosales, Francisco, 2022. "Orthogonal portfolios to assess estimation risk," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 906-937.
    9. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    10. Taras Bodnar & Yarema Okhrin & Valdemar Vitlinskyy & Taras Zabolotskyy, 2018. "Determination and estimation of risk aversion coefficients," Computational Management Science, Springer, vol. 15(2), pages 297-317, June.
    11. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    12. Bodnar Taras & Schmid Wolfgang, 2011. "On the exact distribution of the estimated expected utility portfolio weights: Theory and applications," Statistics & Risk Modeling, De Gruyter, vol. 28(4), pages 319-342, December.
    13. Lakshina, Valeriya, 2020. "Do portfolio investors need to consider the asymmetry of returns on the Russian stock market?," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    14. Gan, Quan, 2014. "Location-scale portfolio selection with factor-recentered skew normal asset returns," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 176-187.
    15. Taras Bodnar & Holger Dette & Nestor Parolya & Erik Thors'en, 2019. "Sampling Distributions of Optimal Portfolio Weights and Characteristics in Low and Large Dimensions," Papers 1908.04243, arXiv.org, revised Apr 2023.
    16. Xue Dong He & Hanqing Jin & Xun Yu Zhou, 2015. "Dynamic Portfolio Choice When Risk Is Measured by Weighted VaR," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 773-796, March.
    17. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    18. Bianchi, Robert J. & Bornholt, Graham & Drew, Michael E. & Howard, Michael F., 2014. "Long-term U.S. infrastructure returns and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 314-325.
    19. Begoña Font, 2016. "Bootstrap estimation of the efficient frontier," Computational Management Science, Springer, vol. 13(4), pages 541-570, October.
    20. Bodnar, Taras & Lindholm, Mathias & Niklasson, Vilhelm & Thorsén, Erik, 2022. "Bayesian portfolio selection using VaR and CVaR," Applied Mathematics and Computation, Elsevier, vol. 427(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:76:y:2013:i:8:p:1105-1134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.