IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v55y2014i4p983-1000.html
   My bibliography  Save this article

Distributions for spherical data based on nonnegative trigonometric sums

Author

Listed:
  • J. Fernández-Durán
  • M. Gregorio-Domínguez

Abstract

A family of distributions for a random pair of angles that determine a point on the surface of a three-dimensional unit sphere (three-dimensional directions) is proposed. It is based on the use of nonnegative double trigonometric (Fourier) sums (series). Using this family of distributions, data that possess rotational symmetry, asymmetry or one or more modes can be modeled. In addition, the joint trigonometric moments are expressed in terms of the model parameters. An efficient Newton-like optimization algorithm on manifolds is developed to obtain the maximum likelihood estimates of the parameters. The proposed family is applied to two real data sets studied previously in the literature. The first data set is related to the measurements of magnetic remanence in samples of Precambrian volcanics in Australia and the second to the arrival directions of low mu showers of cosmic rays. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • J. Fernández-Durán & M. Gregorio-Domínguez, 2014. "Distributions for spherical data based on nonnegative trigonometric sums," Statistical Papers, Springer, vol. 55(4), pages 983-1000, November.
  • Handle: RePEc:spr:stpapr:v:55:y:2014:i:4:p:983-1000
    DOI: 10.1007/s00362-013-0547-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-013-0547-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-013-0547-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. J. Fernández-Durán, 2004. "Circular Distributions Based on Nonnegative Trigonometric Sums," Biometrics, The International Biometric Society, vol. 60(2), pages 499-503, June.
    2. Hendriks, Harrie, 2003. "Application of fast spherical Fourier transform to density estimation," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 209-221, February.
    3. Adelaide Figueiredo, 2008. "Two-way ANOVA for the Watson distribution defined on the hypersphere," Statistical Papers, Springer, vol. 49(2), pages 363-376, April.
    4. Peel D. & Whiten W. J & McLachlan G. J, 2001. "Fitting Mixtures of Kent Distributions to Aid in Joint Set Identification," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 56-63, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khardani, Salah & Yao, Anne Françoise, 2022. "Nonparametric recursive regression estimation on Riemannian Manifolds," Statistics & Probability Letters, Elsevier, vol. 182(C).
    2. Kim, Yoon Tae & Park, Hyun Suk, 2013. "Geometric structures arising from kernel density estimation on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 112-126.
    3. Sungsu Kim & Ashis SenGupta, 2013. "A three-parameter generalized von Mises distribution," Statistical Papers, Springer, vol. 54(3), pages 685-693, August.
    4. Hornik, Kurt & Grün, Bettina, 2014. "movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i10).
    5. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    6. Carnicero, José Antonio, 2008. "A semi-parametric model for circular data based on mixtures of beta distributions," DES - Working Papers. Statistics and Econometrics. WS ws081305, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. José T.A.S. Ferreira & Miguel A Juárez & MArk F.J. Steel, 2005. "Directional Log-spline Distributions," Econometrics 0511001, University Library of Munich, Germany.
    8. Harvey, A. & Hurn, S. & Thiele, S., 2019. "Modeling directional (circular) time series," Cambridge Working Papers in Economics 1971, Faculty of Economics, University of Cambridge.
    9. William Bell & Saralees Nadarajah, 2024. "A Review of Wrapped Distributions for Circular Data," Mathematics, MDPI, vol. 12(16), pages 1-51, August.
    10. Hall, Peter & Yatchew, Adonis, 2010. "Nonparametric least squares estimation in derivative families," Journal of Econometrics, Elsevier, vol. 157(2), pages 362-374, August.
    11. H. Fotouhi & M. Golalizadeh, 2015. "Highly resistant gradient descent algorithm for computing intrinsic mean shape on similarity shape spaces," Statistical Papers, Springer, vol. 56(2), pages 391-410, May.
    12. Carnicero, José Antonio, 2011. "Non-parametric methods for circular-circular and circular-linear," DES - Working Papers. Statistics and Econometrics. WS ws110704, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Adelaide Figueiredo, 2017. "Clustering Directions Based on the Estimation of a Mixture of Von Mises-Fisher Distributions," The Open Statistics and Probability Journal, Bentham Open, vol. 8(1), pages 39-52, December.
    14. Marco Bee & Roberto Benedetti & Giuseppe Espa, 2015. "Approximate likelihood inference for the Bingham distribution," DEM Working Papers 2015/02, Department of Economics and Management.
    15. Vaidehi Dixit & Ryan Martin, 2022. "Estimating a Mixing Distribution on the Sphere Using Predictive Recursion," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 596-626, November.
    16. Bee, Marco & Benedetti, Roberto & Espa, Giuseppe, 2017. "Approximate maximum likelihood estimation of the Bingham distribution," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 84-96.
    17. Umbach, Dale & Jammalamadaka, S. Rao, 2009. "Building asymmetry into circular distributions," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 659-663, March.
    18. Kim, Sungsu & SenGupta, Ashis & Arnold, Barry C., 2016. "A multivariate circular distribution with applications to the protein structure prediction problem," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 374-382.
    19. Pelletier, Bruno, 2005. "Kernel density estimation on Riemannian manifolds," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 297-304, July.
    20. McVinish, R. & Mengersen, K., 2008. "Semiparametric Bayesian circular statistics," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4722-4730, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:55:y:2014:i:4:p:983-1000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.