IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v84y2022i2d10.1007_s13571-021-00275-w.html
   My bibliography  Save this article

Estimating a Mixing Distribution on the Sphere Using Predictive Recursion

Author

Listed:
  • Vaidehi Dixit

    (North Carolina State University)

  • Ryan Martin

    (North Carolina State University)

Abstract

Mixture models are commonly used when data show signs of heterogeneity and, often, it is important to estimate the distribution of the latent variable responsible for that heterogeneity. This is a common problem for data taking values in a Euclidean space, but the work on mixing distribution estimation based on directional data taking values on the unit sphere is limited. In this paper, we propose using the predictive recursion (PR) algorithm to solve for a mixture on a sphere. One key feature of PR is its computational efficiency. Moreover, compared to likelihood-based methods that only support finite mixing distribution estimates, PR is able to estimate a smooth mixing density. PR’s asymptotic consistency in spherical mixture models is established, and simulation results showcase its benefits compared to existing likelihood-based methods. Using PR we propose a method for goodness-of-fit testing and a clustering mechanism in the context of directional data with two real-data illustrations.

Suggested Citation

  • Vaidehi Dixit & Ryan Martin, 2022. "Estimating a Mixing Distribution on the Sphere Using Predictive Recursion," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 596-626, November.
  • Handle: RePEc:spr:sankhb:v:84:y:2022:i:2:d:10.1007_s13571-021-00275-w
    DOI: 10.1007/s13571-021-00275-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-021-00275-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-021-00275-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/369 is not listed on IDEAS
    2. Huageng Tao & Mari Palta & Brian S. Yandell & Michael A. Newton, 1999. "An Estimation Method for the Semiparametric Mixed Effects Model," Biometrics, The International Biometric Society, vol. 55(1), pages 102-110, March.
    3. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    4. ROSS McVINISH & JUDITH ROUSSEAU & KERRIE MENGERSEN, 2009. "Bayesian Goodness of Fit Testing with Mixtures of Triangular Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 337-354, June.
    5. Wesley Tansey & Oluwasanmi Koyejo & Russell A. Poldrack & James G. Scott, 2018. "False Discovery Rate Smoothing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1156-1171, July.
    6. Ryan Martin & Surya T. Tokdar, 2011. "Semiparametric inference in mixture models with predictive recursion marginal likelihood," Biometrika, Biometrika Trust, vol. 98(3), pages 567-582.
    7. Hornik, Kurt & Grün, Bettina, 2014. "movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i10).
    8. Andrew Wood, 1982. "A Bimodal Distribution on the Sphere," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(1), pages 52-58, March.
    9. Martin, Ryan & Han, Zhen, 2016. "A semiparametric scale-mixture regression model and predictive recursion maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 75-85.
    10. Berger J. O & Guglielmi A., 2001. "Bayesian and Conditional Frequentist Testing of a Parametric Model Versus Nonparametric Alternatives," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 174-184, March.
    11. Peel D. & Whiten W. J & McLachlan G. J, 2001. "Fitting Mixtures of Kent Distributions to Aid in Joint Set Identification," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 56-63, March.
    12. James G. Scott & Ryan C. Kelly & Matthew A. Smith & Pengcheng Zhou & Robert E. Kass, 2015. "False Discovery Rate Regression: An Application to Neural Synchrony Detection in Primary Visual Cortex," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 459-471, June.
    13. G. J. McLachlan, 1987. "On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 318-324, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryan Martin, 2021. "A Survey of Nonparametric Mixing Density Estimation via the Predictive Recursion Algorithm," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 97-121, May.
    2. Adelaide Figueiredo, 2017. "Clustering Directions Based on the Estimation of a Mixture of Von Mises-Fisher Distributions," The Open Statistics and Probability Journal, Bentham Open, vol. 8(1), pages 39-52, December.
    3. Luai Al-Labadi, 2021. "The two-sample problem via relative belief ratio," Computational Statistics, Springer, vol. 36(3), pages 1791-1808, September.
    4. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    5. José T.A.S. Ferreira & Miguel A Juárez & MArk F.J. Steel, 2005. "Directional Log-spline Distributions," Econometrics 0511001, University Library of Munich, Germany.
    6. Lo, Yungtai, 2011. "Bias from misspecification of the component variances in a normal mixture," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2739-2747, September.
    7. Dennis Leung & Wenguang Sun, 2022. "ZAP: Z$$ Z $$‐value adaptive procedures for false discovery rate control with side information," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1886-1946, November.
    8. Barrientos, Andrés F. & Canale, Antonio, 2021. "A Bayesian goodness-of-fit test for regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    9. Lo, Yungtai, 2005. "Likelihood ratio tests of the number of components in a normal mixture with unequal variances," Statistics & Probability Letters, Elsevier, vol. 71(3), pages 225-235, March.
    10. Surya T. Tokdar & Ryan Martin, 2021. "Bayesian Test of Normality Versus a Dirichlet Process Mixture Alternative," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 66-96, May.
    11. Polymenis, A. & Titterington, D. M., 1998. "On the determination of the number of components in a mixture," Statistics & Probability Letters, Elsevier, vol. 38(4), pages 295-298, July.
    12. Roberto Zelli & Maria Grazia Pittau, 2006. "Empirical evidence of income dynamics across EU regions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 605-628.
    13. Daniel Fernández & Richard Arnold & Shirley Pledger & Ivy Liu & Roy Costilla, 2019. "Finite mixture biclustering of discrete type multivariate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 117-143, March.
    14. Ho, Remus K.W. & Hu, Inchi, 2008. "Flexible modelling of random effects in linear mixed models--A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1347-1361, January.
    15. Bettina Grün & Gertraud Malsiner-Walli & Sylvia Frühwirth-Schnatter, 2022. "How many data clusters are in the Galaxy data set?," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 325-349, June.
    16. Fetene B. Tekle & Dereje W. Gudicha & Jeroen K. Vermunt, 2016. "Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 209-224, June.
    17. Bharath, Karthik & Dey, Dipak K., 2011. "Test to distinguish a Brownian motion from a Brownian bridge using Polya tree process," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 140-145, January.
    18. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    19. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    20. Sik-Yum Lee, 2006. "Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 71(3), pages 541-564, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:84:y:2022:i:2:d:10.1007_s13571-021-00275-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.