IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v84y2003i2p209-221.html
   My bibliography  Save this article

Application of fast spherical Fourier transform to density estimation

Author

Listed:
  • Hendriks, Harrie

Abstract

This paper is on density estimation on the 2-sphere, S2, using the orthogonal series estimator corresponding to spherical harmonics. In the standard approach of truncating the Fourier series of the empirical density, the Fourier transform is replaced with a version of the discrete fast spherical Fourier transform, as developed by Driscoll and Healy. The fast transform only applies to quantitative data on a regular grid. We will apply a kernel operator to the empirical density, to produce a function whose values at the vertices of such a grid will be the basis for the density estimation. The proposed estimation procedure also contains a deconvolution step, in order to reduce the bias introduced by the initial kernel operator. The main issue is to find necessary conditions on the involved discretization and the bandwidth of the kernel operator, to preserve the rate of convergence that can be achieved by the usual computationally intensive Fourier transform. Density estimation is considered in L2(S2) and more generally in Sobolev spaces Hv(S2), any v[greater-or-equal, slanted]0, with the regularity assumption that the probability density to be estimated belongs to Hs(S2) for some s>v. The proposed technique to estimate the Fourier transform of an unknown density keeps computing cost down to order O(n), where n denotes the sample size.

Suggested Citation

  • Hendriks, Harrie, 2003. "Application of fast spherical Fourier transform to density estimation," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 209-221, February.
  • Handle: RePEc:eee:jmvana:v:84:y:2003:i:2:p:209-221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00041-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Healy, Dennis M. & Hendriks, Harrie & Kim, Peter T., 1998. "Spherical Deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 1-22, October.
    2. Ta-Hsin Li & Gerald North, 1997. "Aliasing Effects and Sampling Theorems of Spherical Random Fields when Sampled on a Finite Grid," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(2), pages 341-354, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hall, Peter & Yatchew, Adonis, 2010. "Nonparametric least squares estimation in derivative families," Journal of Econometrics, Elsevier, vol. 157(2), pages 362-374, August.
    2. Pelletier, Bruno, 2005. "Kernel density estimation on Riemannian manifolds," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 297-304, July.
    3. Kim, Yoon Tae & Park, Hyun Suk, 2013. "Geometric structures arising from kernel density estimation on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 112-126.
    4. Khardani, Salah & Yao, Anne Françoise, 2022. "Nonparametric recursive regression estimation on Riemannian Manifolds," Statistics & Probability Letters, Elsevier, vol. 182(C).
    5. J. Fernández-Durán & M. Gregorio-Domínguez, 2014. "Distributions for spherical data based on nonnegative trigonometric sums," Statistical Papers, Springer, vol. 55(4), pages 983-1000, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jammalamadaka, S. Rao & Terdik, György H., 2019. "Harmonic analysis and distribution-free inference for spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 436-451.
    2. Goldenshluger, Alexander, 2002. "Density Deconvolution in the Circular Structural Model," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 360-375, May.
    3. Kim, Yoon Tae & Park, Hyun Suk, 2013. "Geometric structures arising from kernel density estimation on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 112-126.
    4. Crane, M. & Patrangenaru, V., 2011. "Random change on a Lie group and mean glaucomatous projective shape change detection from stereo pair images," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 225-237, February.
    5. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    6. Kim, Peter T. & Koo, Ja-Yong & Park, Heon Jin, 2004. "Sharp minimaxity and spherical deconvolution for super-smooth error distributions," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 384-392, August.
    7. Pelletier, Bruno, 2005. "Kernel density estimation on Riemannian manifolds," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 297-304, July.
    8. Vareschi, T., 2014. "Application of second generation wavelets to blind spherical deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 398-417.
    9. Bissantz, Nicolai & Hohage, T. & Munk, Axel & Ruymgaart, F., 2007. "Convergence rates of general regularization methods for statistical inverse problems and applications," Technical Reports 2007,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Arnoud van Rooij & Frits Ruymgaart, 2001. "Abstract Inverse Estimation with Application to Deconvolution on Locally Compact Abelian Groups," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 781-798, December.
    11. Kim, Peter T. & Koo, Ja-Yong & Luo, Zhi-Ming, 2009. "Weyl eigenvalue asymptotics and sharp adaptation on vector bundles," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1962-1978, October.
    12. Jeon, Jeong Min & Van Keilegom, Ingrid, 2023. "Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    13. Huang, Chunfeng & Zhang, Haimeng & Robeson, Scott M., 2012. "A simplified representation of the covariance structure of axially symmetric processes on the sphere," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1346-1351.
    14. Koo, Ja-Yong & Kim, Peter T., 2008. "Sharp adaptation for spherical inverse problems with applications to medical imaging," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 165-190, February.
    15. Kim, Peter T. & Koo, Ja-Yong, 2002. "Optimal Spherical Deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 21-42, January.
    16. Hielscher, Ralf, 2013. "Kernel density estimation on the rotation group and its application to crystallographic texture analysis," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 119-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:84:y:2003:i:2:p:209-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.