IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v114y2013icp112-126.html
   My bibliography  Save this article

Geometric structures arising from kernel density estimation on Riemannian manifolds

Author

Listed:
  • Kim, Yoon Tae
  • Park, Hyun Suk

Abstract

Estimating the kernel density function of a random vector taking values on Riemannian manifolds is considered. We make use of the concept of exponential map in order to define the kernel density estimator. We study the asymptotic behavior of the kernel estimator which contains geometric quantities (i.e. the curvature tensor and its covariant derivatives). Under a Hölder class of functions defined on a Riemannian manifold with some global losses, the L2-minimax rate and its relative efficiency are obtained.

Suggested Citation

  • Kim, Yoon Tae & Park, Hyun Suk, 2013. "Geometric structures arising from kernel density estimation on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 112-126.
  • Handle: RePEc:eee:jmvana:v:114:y:2013:i:c:p:112-126
    DOI: 10.1016/j.jmva.2012.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12001741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pelletier, Bruno, 2005. "Kernel density estimation on Riemannian manifolds," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 297-304, July.
    2. Healy, Dennis M. & Hendriks, Harrie & Kim, Peter T., 1998. "Spherical Deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 1-22, October.
    3. Bai, Z. D. & Rao, C. Radhakrishna & Zhao, L. C., 1988. "Kernel estimators of density function of directional data," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 24-39, October.
    4. Hendriks, Harrie, 2003. "Application of fast spherical Fourier transform to density estimation," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 209-221, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asta, Dena Marie, 2021. "Kernel density estimation on symmetric spaces of non-compact type," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    2. Federico Ferraccioli & Eleonora Arnone & Livio Finos & James O. Ramsay & Laura M. Sangalli, 2021. "Nonparametric density estimation over complicated domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 346-368, April.
    3. Khardani, Salah & Yao, Anne Françoise, 2022. "Nonparametric recursive regression estimation on Riemannian Manifolds," Statistics & Probability Letters, Elsevier, vol. 182(C).
    4. Arnone, Eleonora & Ferraccioli, Federico & Pigolotti, Clara & Sangalli, Laura M., 2022. "A roughness penalty approach to estimate densities over two-dimensional manifolds," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    5. Berry, Tyrus & Sauer, Timothy, 2017. "Density estimation on manifolds with boundary," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 1-17.
    6. Ki, Dohyeong & Park, Byeong U., 2021. "Intrinsic Hölder classes of density functions on Riemannian manifolds and lower bounds to convergence rates," Statistics & Probability Letters, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khardani, Salah & Yao, Anne Françoise, 2022. "Nonparametric recursive regression estimation on Riemannian Manifolds," Statistics & Probability Letters, Elsevier, vol. 182(C).
    2. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    3. Hall, Peter & Yatchew, Adonis, 2010. "Nonparametric least squares estimation in derivative families," Journal of Econometrics, Elsevier, vol. 157(2), pages 362-374, August.
    4. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    5. Pelletier, Bruno, 2005. "Kernel density estimation on Riemannian manifolds," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 297-304, July.
    6. Hielscher, Ralf, 2013. "Kernel density estimation on the rotation group and its application to crystallographic texture analysis," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 119-143.
    7. Hendriks, Harrie, 2003. "Application of fast spherical Fourier transform to density estimation," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 209-221, February.
    8. Jammalamadaka, S. Rao & Terdik, György H., 2019. "Harmonic analysis and distribution-free inference for spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 436-451.
    9. Guillermo Henry & Daniela Rodriguez, 2009. "Robust nonparametric regression on Riemannian manifolds," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 611-628.
    10. Fabian Dunker & Konstantin Eckle & Katharina Proksch & Johannes Schmidt-Hieber, 2017. "Tests for qualitative features in the random coefficients model," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 225, Courant Research Centre PEG.
    11. Crane, M. & Patrangenaru, V., 2011. "Random change on a Lie group and mean glaucomatous projective shape change detection from stereo pair images," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 225-237, February.
    12. Arthur Pewsey & Eduardo García-Portugués, 2021. "Rejoinder on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 76-82, March.
    13. Kim, Peter T. & Koo, Ja-Yong & Park, Heon Jin, 2004. "Sharp minimaxity and spherical deconvolution for super-smooth error distributions," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 384-392, August.
    14. Graciela Boente & Daniela Rodriguez & Wenceslao González Manteiga, 2014. "Goodness-of-fit Test for Directional Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 259-275, March.
    15. Vareschi, T., 2014. "Application of second generation wavelets to blind spherical deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 398-417.
    16. Pham Ngoc, Thanh Mai, 2019. "Adaptive optimal kernel density estimation for directional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 248-267.
    17. Healy, Dennis M. & Hendriks, Harrie & Kim, Peter T., 1998. "Spherical Deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 1-22, October.
    18. Charles C. Taylor & Kanti V. Mardia & Marco Di Marzio & Agnese Panzera, 2012. "Validating protein structure using kernel density estimates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2379-2388, July.
    19. Bissantz, Nicolai & Hohage, T. & Munk, Axel & Ruymgaart, F., 2007. "Convergence rates of general regularization methods for statistical inverse problems and applications," Technical Reports 2007,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    20. Agostinelli, Claudio, 2007. "Robust estimation for circular data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5867-5875, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:114:y:2013:i:c:p:112-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.