IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v54y2013i3p685-693.html
   My bibliography  Save this article

A three-parameter generalized von Mises distribution

Author

Listed:
  • Sungsu Kim
  • Ashis SenGupta

Abstract

In this paper, we propose a three-parameter generalized von Mises distribution, called the asymmetric generalized von Mises (AGvM) distribution, which is an extension of the von Mises (vM) distribution, and a subclass of the generalized von Mises (GvM) distribution introduced by Gatto and Jammalamadaka (Stat Methodol 4:341–353, 2007 ). The three parameter model belongs to an exponential family of distributions and can be used to model both asymmetric and bimodal data. Some properties are studied and interpretation of the parameters is discussed in detail. It is shown that the parameters of the AGvM distribution are particularly easy to interpret and contain a skewness measure as one of its three parameters. A real environmental data set example is provided to illustrate the goodness of fit for AGvM distribution. Copyright Springer-Verlag 2013

Suggested Citation

  • Sungsu Kim & Ashis SenGupta, 2013. "A three-parameter generalized von Mises distribution," Statistical Papers, Springer, vol. 54(3), pages 685-693, August.
  • Handle: RePEc:spr:stpapr:v:54:y:2013:i:3:p:685-693
    DOI: 10.1007/s00362-012-0454-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-012-0454-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-012-0454-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. J. Fernández-Durán, 2004. "Circular Distributions Based on Nonnegative Trigonometric Sums," Biometrics, The International Biometric Society, vol. 60(2), pages 499-503, June.
    2. M. Sharafi & J. Behboodian, 2008. "The Balakrishnan skew–normal density," Statistical Papers, Springer, vol. 49(4), pages 769-778, October.
    3. P. Hasanalipour & M. Sharafi, 2012. "A new generalized Balakrishnan skew-normal distribution," Statistical Papers, Springer, vol. 53(1), pages 219-228, February.
    4. Ulric Lund, 1999. "Least circular distance regression for directional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(6), pages 723-733.
    5. Umbach, Dale & Jammalamadaka, S. Rao, 2009. "Building asymmetry into circular distributions," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 659-663, March.
    6. Toshihiro Abe & Arthur Pewsey, 2011. "Sine-skewed circular distributions," Statistical Papers, Springer, vol. 52(3), pages 683-707, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoping Zhan & Tiefeng Ma & Shuangzhe Liu & Kunio Shimizu, 2019. "On circular correlation for data on the torus," Statistical Papers, Springer, vol. 60(6), pages 1827-1847, December.
    2. Mojtaba Hatami & Mohammad Hossein Alamatsaz, 2019. "Skew-symmetric circular distributions and their structural properties," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(4), pages 953-969, December.
    3. Xiaoping Zhan & Tiefeng Ma & Shuangzhe Liu & Kunio Shimizu, 2018. "Markov-Switching Linked Autoregressive Model for Non-continuous Wind Direction Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 410-425, September.
    4. Imoto, Tomoaki & Abe, Toshihiro, 2021. "Simple construction of a toroidal distribution from independent circular distributions," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    5. Jan Beran & Britta Steffens & Sucharita Ghosh, 2022. "On nonparametric regression for bivariate circular long-memory time series," Statistical Papers, Springer, vol. 63(1), pages 29-52, February.
    6. Arnab Kumar Laha & A. C. Pravida Raja & K. C. Mahesh, 2019. "SB-robust estimation of mean direction for some new circular distributions," Statistical Papers, Springer, vol. 60(3), pages 877-902, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abe, Toshihiro & Miyata, Yoichi & Shiohama, Takayuki, 2023. "Bayesian estimation for mode and anti-mode preserving circular distributions," Econometrics and Statistics, Elsevier, vol. 27(C), pages 136-160.
    2. M. Jones & Arthur Pewsey & Shogo Kato, 2015. "On a class of circulas: copulas for circular distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 843-862, October.
    3. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    4. Christophe Ley & Thomas Verdebout, 2014. "Skew-rotsymmetric Distributions on Unit Spheres and Related Efficient Inferential Proceedures," Working Papers ECARES ECARES 2014-46, ULB -- Universite Libre de Bruxelles.
    5. Yoichi Miyata & Takayuki Shiohama & Toshihiro Abe, 2023. "Identifiability of Asymmetric Circular and Cylindrical Distributions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1431-1451, August.
    6. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    7. Shogo Kato & Arthur Pewsey & M. C. Jones, 2022. "Tractable circula densities from Fourier series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 595-618, September.
    8. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Too many skew normal distributions? The practitioner’s perspective," Discussion Papers in Economics 13/07, Division of Economics, School of Business, University of Leicester.
    9. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Mojtaba Hatami & Mohammad Hossein Alamatsaz, 2019. "Skew-symmetric circular distributions and their structural properties," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(4), pages 953-969, December.
    11. Andrade, Ana C.C. & Pereira, Gustavo H.A. & Artes, Rinaldo, 2023. "The circular quantile residual," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    12. Toshihiro Abe & Arthur Pewsey & Kunio Shimizu, 2013. "Extending circular distributions through transformation of argument," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 833-858, October.
    13. M. C. Jones & Arthur Pewsey, 2012. "Inverse Batschelet Distributions for Circular Data," Biometrics, The International Biometric Society, vol. 68(1), pages 183-193, March.
    14. McVinish, R. & Mengersen, K., 2008. "Semiparametric Bayesian circular statistics," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4722-4730, June.
    15. Teimouri, Mahdi & Nadarajah, Saralees, 2013. "On simulating Balakrishnan skew-normal variates," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 52-58.
    16. Ley, Christophe & Verdebout, Thomas, 2017. "Skew-rotationally-symmetric distributions and related efficient inferential procedures," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 67-81.
    17. Jose Ameijeiras-Alonso & Christophe Ley & Arthur Pewsey & Thomas Verdebout, 2021. "On optimal tests for circular reflective symmetry about an unknown central direction," Statistical Papers, Springer, vol. 62(4), pages 1651-1674, August.
    18. Carnicero, José Antonio, 2008. "A semi-parametric model for circular data based on mixtures of beta distributions," DES - Working Papers. Statistics and Econometrics. WS ws081305, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. José T.A.S. Ferreira & Miguel A Juárez & MArk F.J. Steel, 2005. "Directional Log-spline Distributions," Econometrics 0511001, University Library of Munich, Germany.
    20. Mahdi Rasekhi & G. G. Hamedani & Rahim Chinipardaz, 2017. "A flexible extension of skew generalized normal distribution," METRON, Springer;Sapienza Università di Roma, vol. 75(1), pages 87-107, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:54:y:2013:i:3:p:685-693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.