IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v32y2023i3d10.1007_s10260-022-00680-z.html
   My bibliography  Save this article

Estimators for ROC curves with missing biomarkers values and informative covariates

Author

Listed:
  • Ana M. Bianco

    (Universidad de Buenos Aires and CONICET)

  • Graciela Boente

    (Universidad de Buenos Aires and CONICET)

  • Wenceslao González–Manteiga

    (Universidad de Santiago de Compostela)

  • Ana Pérez–González

    (Universidad de Vigo)

Abstract

In this paper, we present three estimators of the $${\hbox {ROC}}$$ ROC curve when missing observations arise among the biomarkers. Two of the procedures assume that we have covariates that allow to estimate the propensity and and from this information, the estimators are obtained using an inverse probability weighting method or a smoothed version of it. The third one assumes that the covariates are related to the biomarkers through a regression model which enables us to construct convolution–based estimators of the distribution and quantile functions. Consistency results are obtained under mild conditions. Through a numerical study we evaluate the finite sample performance of the different proposals. A real data set is also analysed.

Suggested Citation

  • Ana M. Bianco & Graciela Boente & Wenceslao González–Manteiga & Ana Pérez–González, 2023. "Estimators for ROC curves with missing biomarkers values and informative covariates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 931-956, September.
  • Handle: RePEc:spr:stmapp:v:32:y:2023:i:3:d:10.1007_s10260-022-00680-z
    DOI: 10.1007/s10260-022-00680-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-022-00680-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-022-00680-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pardo-Fernandez, Juan Carlos & Rodriguez-Alvarez, Maria Xose & Van Keilegom, Ingrid, 2014. "A review on ROC curves in the presence of covariates," LIDAM Reprints ISBA 2014044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. GonzAlez-Manteiga, Wenceslao & Pardo-FernAndez, Juan Carlos & Van Keilegom, Ingrid, 2011. "ROC Curves in Non-Parametric Location-Scale Regression Models," LIDAM Reprints ISBA 2011010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Qi Long & Xiaoxi Zhang & Brent A. Johnson, 2011. "Robust Estimation of Area Under ROC Curve Using Auxiliary Variables in the Presence of Missing Biomarker Values," Biometrics, The International Biometric Society, vol. 67(2), pages 559-567, June.
    4. Shanshan Li & Yang Ning, 2015. "Estimation of covariate‐specific time‐dependent ROC curves in the presence of missing biomarkers," Biometrics, The International Biometric Society, vol. 71(3), pages 666-676, September.
    5. Michał Pulit, 2016. "A new method of kernel-smoothing estimation of the ROC curve," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 603-634, July.
    6. Yang, Hanfang & Zhao, Yichuan, 2015. "Smoothed jackknife empirical likelihood inference for ROC curves with missing data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 123-138.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Álvarez, María Xosé & Roca-Pardiñas, Javier & Cadarso-Suárez, Carmen, 2011. "A new flexible direct ROC regression model: Application to the detection of cardiovascular risk factors by anthropometric measures," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3257-3270, December.
    2. Amorim, G. & Thas, O. & Vermeulen, K. & Vansteelandt, S. & De Neve, J., 2018. "Small sample inference for probabilistic index models," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 137-148.
    3. Hanfang Yang & Yichuan Zhao, 2017. "Smoothed jackknife empirical likelihood for the difference of two quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 1059-1073, October.
    4. Zhao, Yichuan & Su, Yueju & Yang, Hanfang, 2020. "Jackknife empirical likelihood inference for the Pietra ratio," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    5. Pardo-Fernandez, Juan Carlos & Rodriguez-alvarez, Maria Xose & Van Keilegom, Ingrid, 2013. "A review on ROC curves in the presence of covariates," LIDAM Discussion Papers ISBA 2013050, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Yongcheng Qi, 2018. "Jackknife Empirical Likelihood Methods," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(2), pages 20-22, June.
    7. Xue Yu & Yichuan Zhao, 2019. "Jackknife empirical likelihood inference for the accelerated failure time model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 269-288, March.
    8. Yu, Xue & Zhao, Yichuan, 2019. "Empirical likelihood inference for semi-parametric transformation models with length-biased sampling," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 115-125.
    9. Vanda Inácio de Carvalho & Miguel de Carvalho & Adam J. Branscum, 2017. "Nonparametric Bayesian covariate‐adjusted estimation of the Youden index," Biometrics, The International Biometric Society, vol. 73(4), pages 1279-1288, December.
    10. Hui-Ling Lin & Zhouping Li & Dongliang Wang & Yichuan Zhao, 2017. "Jackknife empirical likelihood for the error variance in linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 151-166, April.
    11. Dongliang Wang & Xueya Cai, 2021. "Smooth ROC curve estimation via Bernstein polynomials," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-12, May.
    12. Yueheng An & Yichuan Zhao, 2018. "Jackknife empirical likelihood for the difference of two volumes under ROC surfaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 789-806, August.
    13. Wei Jiang & Ling Chen & Matthew J. Girgenti & Hongyu Zhao, 2024. "Tuning parameters for polygenic risk score methods using GWAS summary statistics from training data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:32:y:2023:i:3:d:10.1007_s10260-022-00680-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.