IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i12p3257-3270.html
   My bibliography  Save this article

A new flexible direct ROC regression model: Application to the detection of cardiovascular risk factors by anthropometric measures

Author

Listed:
  • Rodríguez-Álvarez, María Xosé
  • Roca-Pardiñas, Javier
  • Cadarso-Suárez, Carmen

Abstract

The receiver operating characteristic (ROC) curve is the most widely used measure for evaluating the accuracy of diagnostic tests in terms of differentiating between two conditions. It is known that, in certain circumstances, the characteristics of the patient or the place where the diagnostic test is performed can modify the test's accuracy. A new estimator for the conditional ROC curve, based on direct modelling, is proposed. In this approach, the effect of covariates and false positive fraction on the ROC curve is modelled non-parametrically using generalised additive models (GAM) combined with local polynomial kernel smoothers. The method allows for incorporation of more than one covariate in the regression model for the ROC curve and the possible interaction between them. The proposed model's performance is examined in an in-depth simulation study. Finally, endocrine data are analysed with the aim of assessing the performance of several anthropometric measures in predicting clusters of cardiovascular risk factors in an adult population in Galicia (NW Spain), with adjustment for age and gender.

Suggested Citation

  • Rodríguez-Álvarez, María Xosé & Roca-Pardiñas, Javier & Cadarso-Suárez, Carmen, 2011. "A new flexible direct ROC regression model: Application to the detection of cardiovascular risk factors by anthropometric measures," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3257-3270, December.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3257-3270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002118
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Margaret Sullivan Pepe, 2000. "An Interpretation for the ROC Curve and Inference Using GLM Procedures," Biometrics, The International Biometric Society, vol. 56(2), pages 352-359, June.
    2. Yingye Zheng & Patrick Heagerty, 2004. "Semiparametric Estimation of Time-Dependent: ROC Curves for Longitudinal Marker Data," UW Biostatistics Working Paper Series 1052, Berkeley Electronic Press.
    3. GonzAlez-Manteiga, Wenceslao & Pardo-FernAndez, Juan Carlos & Van Keilegom, Ingrid, 2011. "ROC Curves in Non-Parametric Location-Scale Regression Models," LIDAM Reprints ISBA 2011010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    5. Opsomer, Jean D., 2000. "Asymptotic Properties of Backfitting Estimators," Journal of Multivariate Analysis, Elsevier, vol. 73(2), pages 166-179, May.
    6. Rodríguez-Álvarez, María Xosé & Tahoces, Pablo G. & Cadarso-Suárez, Carmen & Lado, María José, 2011. "Comparative study of ROC regression techniques--Applications for the computer-aided diagnostic system in breast cancer detection," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 888-902, January.
    7. Anna N. Angelos Tosteson & Colin B. Begg, 1988. "A General Regression Methodology for ROC Curve Estimation," Medical Decision Making, , vol. 8(3), pages 204-215, August.
    8. Lopez-de-Ullibarri, Ignacio & Cao, Ricardo & Cadarso-Suarez, Carmen & Lado, Maria J., 2008. "Nonparametric estimation of conditional ROC curves: Application to discrimination tasks in computerized detection of early breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2623-2631, January.
    9. Jens Perch Nielsen & Stefan Sperlich, 2005. "Smooth backfitting in practice," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 43-61, February.
    10. Tianxi Cai & Yingye Zheng, 2007. "Model Checking for ROC Regression Analysis," Biometrics, The International Biometric Society, vol. 63(1), pages 152-163, March.
    11. Margaret Sullivan Pepe & Tianxi Cai, 2004. "The Analysis of Placement Values for Evaluating Discriminatory Measures," Biometrics, The International Biometric Society, vol. 60(2), pages 528-535, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pardo-Fernandez, Juan Carlos & Rodriguez-alvarez, Maria Xose & Van Keilegom, Ingrid, 2013. "A review on ROC curves in the presence of covariates," LIDAM Discussion Papers ISBA 2013050, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Coolen-Maturi, Tahani & Elkhafifi, Faiza F. & Coolen, Frank P.A., 2014. "Three-group ROC analysis: A nonparametric predictive approach," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 69-81.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Álvarez, María Xosé & Tahoces, Pablo G. & Cadarso-Suárez, Carmen & Lado, María José, 2011. "Comparative study of ROC regression techniques--Applications for the computer-aided diagnostic system in breast cancer detection," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 888-902, January.
    2. Pardo-Fernandez, Juan Carlos & Rodriguez-alvarez, Maria Xose & Van Keilegom, Ingrid, 2013. "A review on ROC curves in the presence of covariates," LIDAM Discussion Papers ISBA 2013050, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Tianxi Cai & Yingye Zheng, 2007. "Model Checking for ROC Regression Analysis," Biometrics, The International Biometric Society, vol. 63(1), pages 152-163, March.
    4. de Uña Álvarez, Jacobo & Roca Pardiñas, Javier, 2009. "Additive models in censored regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3490-3501, July.
    5. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Y. Huang & M. S. Pepe, 2009. "A Parametric ROC Model-Based Approach for Evaluating the Predictiveness of Continuous Markers in Case–Control Studies," Biometrics, The International Biometric Society, vol. 65(4), pages 1133-1144, December.
    7. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    8. Suneel Babu Chatla, 2023. "Nonparametric inference for additive models estimated via simplified smooth backfitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 71-97, February.
    9. Coolen-Maturi, Tahani & Elkhafifi, Faiza F. & Coolen, Frank P.A., 2014. "Three-group ROC analysis: A nonparametric predictive approach," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 69-81.
    10. Jin, Hua & Lu, Ying, 2009. "The ROC region of a regression tree," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 936-942, April.
    11. Ziyi Li & Yijian Huang & Dattatraya Patil & Martin G. Sanda, 2023. "Covariate adjustment in continuous biomarker assessment," Biometrics, The International Biometric Society, vol. 79(1), pages 39-48, March.
    12. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers 20/12, Institute for Fiscal Studies.
    13. Berthold R. Haag, 2008. "Non‐parametric Regression Tests Using Dimension Reduction Techniques," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 719-738, December.
    14. Soutik Ghosal & Zhen Chen, 2022. "Discriminatory Capacity of Prenatal Ultrasound Measures for Large-for-Gestational-Age Birth: A Bayesian Approach to ROC Analysis Using Placement Values," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 1-22, April.
    15. Holly Janes & Gary Longton & Margaret S. Pepe, 2009. "Accommodating covariates in receiver operating characteristic analysis," Stata Journal, StataCorp LP, vol. 9(1), pages 17-39, March.
    16. Roca-Pardinas, Javier & Cadarso-Suarez, Carmen & Tahoces, Pablo G. & Lado, Maria J., 2008. "Assessing continuous bivariate effects among different groups through nonparametric regression models: An application to breast cancer detection," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1958-1970, January.
    17. Jing Wang & Lijian Yang, 2009. "Efficient and fast spline-backfitted kernel smoothing of additive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 663-690, September.
    18. Martins-Filho, Carlos & yang, ke, 2007. "Finite sample performance of kernel-based regression methods for non-parametric additive models under common bandwidth selection criterion," MPRA Paper 39295, University Library of Munich, Germany.
    19. Lin, Huazhen & Pan, Lixian & Lv, Shaogao & Zhang, Wenyang, 2018. "Efficient estimation and computation for the generalised additive models with unknown link function," Journal of Econometrics, Elsevier, vol. 202(2), pages 230-244.
    20. Juhyun Park & Burkhardt Seifert, 2010. "Local additive estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 171-191, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3257-3270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.