IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v30y2021i5d10.1007_s10260-021-00587-1.html
   My bibliography  Save this article

On the interpretation of inflated correlation path weights in concentration graphs

Author

Listed:
  • Alberto Roverato

    (University of Padova)

Abstract

Statistical models associated with graphs, called graphical models, have become a popular tool for representing network structures in many modern applications. Relevant features of the model are represented by vertices, edges and other higher order structures. A fundamental structural component of the network is represented by paths, which are a sequence of distinct vertices joined by a sequence of edges. The collection of all the paths joining two vertices provides a full description of the association structure between the corresponding variables. In this context, it has been shown that certain pairwise association measures can be decomposed into a sum of weights associated with each of the paths connecting the two variables. We consider a pairwise measure called an inflated correlation coefficient and investigate the properties of the corresponding path weights. We show that every inflated correlation weight can be factorized into terms, each of which is associated either to a vertex or to an edge of the path. This factorization allows one to gain insight into the role played by a path in the network by highlighting the contribution to the weight of each of the elementary units forming the path. This is of theoretical interest because, by establishing a similarity between the weights and the association measure they decompose, it provides a justification for the use of these weights. Furthermore we show how this factorization can be exploited in the computation of centrality measures and describe their use with an application to the analysis of a dietary pattern.

Suggested Citation

  • Alberto Roverato, 2021. "On the interpretation of inflated correlation path weights in concentration graphs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1485-1505, December.
  • Handle: RePEc:spr:stmapp:v:30:y:2021:i:5:d:10.1007_s10260-021-00587-1
    DOI: 10.1007/s10260-021-00587-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-021-00587-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-021-00587-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alberto Roverato & Robert Castelo, 2020. "Path weights in concentration graphs," Biometrika, Biometrika Trust, vol. 107(3), pages 705-722.
    2. Steffen L. Lauritzen & Thomas S. Richardson, 2002. "Chain graph models and their causal interpretations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 321-348, August.
    3. Beatrix Jones & Mike West, 2005. "Covariance decomposition in undirected Gaussian graphical models," Biometrika, Biometrika Trust, vol. 92(4), pages 779-786, December.
    4. Alberto Roverato & Robert Castelo, 2017. "The networked partial correlation and its application to the analysis of genetic interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 647-665, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.
    2. Blom Tineke & Mooij Joris M., 2023. "Causality and independence in perfectly adapted dynamical systems," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-35, January.
    3. Heckman, James & Pinto, Rodrigo, 2015. "Causal Analysis After Haavelmo," Econometric Theory, Cambridge University Press, vol. 31(1), pages 115-151, February.
    4. Alberto Roverato & Robert Castelo, 2017. "The networked partial correlation and its application to the analysis of genetic interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 647-665, April.
    5. Javier Pérez & A. Sánchez, 2011. "Is there a signalling role for public wages? Evidence for the euro area based on macro data," Empirical Economics, Springer, vol. 41(2), pages 421-445, October.
    6. Akyildirim, Erdinc & Cepni, Oguzhan & Pham, Linh & Uddin, Gazi Salah, 2022. "How connected is the agricultural commodity market to the news-based investor sentiment?," Energy Economics, Elsevier, vol. 113(C).
    7. Steele, Fiona & Clarke, Paul & Kuha, Jouni, 2019. "Modeling within-household associations in household panel studies," LSE Research Online Documents on Economics 88162, London School of Economics and Political Science, LSE Library.
    8. Miljkovic, Dragan & Dalbec, Nathan & Zhang, Lei, 2016. "Estimating dynamics of US demand for major fossil fuels," Energy Economics, Elsevier, vol. 55(C), pages 284-291.
    9. Bianchi, Daniele & Billio, Monica & Casarin, Roberto & Guidolin, Massimo, 2019. "Modeling systemic risk with Markov Switching Graphical SUR models," Journal of Econometrics, Elsevier, vol. 210(1), pages 58-74.
    10. Tan, Kean Ming & Witten, Daniela & Shojaie, Ali, 2015. "The cluster graphical lasso for improved estimation of Gaussian graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 23-36.
    11. Alessio Moneta, 2004. "Identification of Monetary Policy Shocks: A graphical causal approach," Notas Económicas, Faculty of Economics, University of Coimbra, issue 20, pages 39-62, December.
    12. Chiranjit Mukherjee & Prasad Kasibhatla & Mike West, 2014. "Spatially varying SAR models and Bayesian inference for high-resolution lattice data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 473-494, June.
    13. Elizabeth L. Ogburn & Ilya Shpitser & Youjin Lee, 2020. "Causal inference, social networks and chain graphs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1659-1676, October.
    14. Tyler J. VanderWeele & James M. Robins, 2010. "Signed directed acyclic graphs for causal inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 111-127, January.
    15. Oxley, Les & Reale, Marco & Wilson, Granville Tunnicliffe, 2009. "Constructing structural VAR models with conditional independence graphs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2910-2916.
    16. Geng, Zhi & Wang, Chi & Zhao, Qiang, 2005. "Decomposition of search for v-structures in DAGs," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 282-294, October.
    17. repec:jss:jstsof:15:i06 is not listed on IDEAS
    18. Pratik Misra & Seth Sullivant, 2021. "Gaussian graphical models with toric vanishing ideals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 757-785, August.
    19. Soraggi, Samuele & Wiuf, Carsten, 2019. "General theory for stochastic admixture graphs and F-statistics," Theoretical Population Biology, Elsevier, vol. 125(C), pages 56-66.
    20. Liang Yulan & Kelemen Arpad, 2016. "Bayesian state space models for dynamic genetic network construction across multiple tissues," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 273-290, August.
    21. Alessio Moneta, 2008. "Graphical causal models and VARs: an empirical assessment of the real business cycles hypothesis," Empirical Economics, Springer, vol. 35(2), pages 275-300, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:30:y:2021:i:5:d:10.1007_s10260-021-00587-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.