IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v16y2024i3d10.1007_s12561-024-09423-y.html
   My bibliography  Save this article

Promotion Time Cure Model with Local Polynomial Estimation

Author

Listed:
  • Li-Hsiang Lin

    (Georgia State University)

  • Li-Shan Huang

    (National Tsing Hua University)

Abstract

In modeling survival data with a cure fraction, flexible modeling of covariate effects on the probability of cure has important medical implications, which aids investigators in identifying better treatments to cure. This paper studies a semiparametric form of the Yakovlev promotion time cure model that allows for nonlinear effects of a continuous covariate. We adopt the local polynomial approach and use the local likelihood criterion to derive nonlinear estimates of covariate effects on cure rates, assuming that the baseline distribution function follows a parametric form. This approach ensures that the model is identifiable and we adopt a flexible method to estimate the cure rate locally, the important part in cure models, and a convenient way to estimate the baseline function globally. An algorithm is proposed to implement estimation at both the local and global scales. Asymptotic properties of local polynomial estimates, the nonparametric part, are investigated in the presence of both censored and cured data, and the parametric part is shown to be root-n consistent. The proposed methods are illustrated by simulated and real data with discussions on the practical applications of the proposed method, including the selections of the bandwidths in the local polynomial approach and the parametric baseline distribution family. Extension of the proposed method to multiple covariates is also discussed.

Suggested Citation

  • Li-Hsiang Lin & Li-Shan Huang, 2024. "Promotion Time Cure Model with Local Polynomial Estimation," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 824-853, December.
  • Handle: RePEc:spr:stabio:v:16:y:2024:i:3:d:10.1007_s12561-024-09423-y
    DOI: 10.1007/s12561-024-09423-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-024-09423-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-024-09423-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:16:y:2024:i:3:d:10.1007_s12561-024-09423-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.