IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v108y2013i504p1517-1531.html
   My bibliography  Save this article

Cure Rate Quantile Regression for Censored Data With a Survival Fraction

Author

Listed:
  • Yuanshan Wu
  • Guosheng Yin

Abstract

Censored quantile regression offers a valuable complement to the traditional Cox proportional hazards model for survival analysis. Survival times tend to be right-skewed, particularly when there exists a substantial fraction of long-term survivors who are either cured or immune to the event of interest. For survival data with a cure possibility, we propose cure rate quantile regression under the common censoring scheme that survival times and censoring times are conditionally independent given the covariates. In a mixture formulation, we apply censored quantile regression to model the survival times of susceptible subjects and logistic regression to model the indicators of whether patients are susceptible. We develop two estimation methods using martingale-based equations: One approach fully uses all regression quantiles by iterating estimation between the cure rate and quantile regression parameters; and the other separates the two via a nonparametric kernel smoothing estimator. We establish the uniform consistency and weak convergence properties for the estimators obtained from both methods. The proposed model is evaluated through extensive simulation studies and illustrated with a bone marrow transplantation data example. Technical proofs of key theorems are given in Appendices A, B, and C, while those of lemmas and additional simulation studies on model misspecification and comparisons with other models are provided in the online Supplementary Materials A and B.

Suggested Citation

  • Yuanshan Wu & Guosheng Yin, 2013. "Cure Rate Quantile Regression for Censored Data With a Survival Fraction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1517-1531, December.
  • Handle: RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1517-1531
    DOI: 10.1080/01621459.2013.837368
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.837368
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.837368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Guosheng & Zeng, Donglin & Li, Hui, 2008. "Power-Transformed Linear Quantile Regression With Censored Data," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1214-1224.
    2. Wang, Huixia Judy & Wang, Lan, 2009. "Locally Weighted Censored Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1117-1128.
    3. Zeng, Donglin & Lin, D.Y., 2007. "Efficient Estimation for the Accelerated Failure Time Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1387-1396, December.
    4. Neocleous, Tereza & Branden, Karlien Vanden & Portnoy, Stephen, 2006. "Correction to Censored Regression Quantiles by S. Portnoy, 98 (2003), 10011012," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 860-861, June.
    5. Portnoy S., 2003. "Censored Regression Quantiles," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1001-1012, January.
    6. Peng, Limin & Huang, Yijian, 2008. "Survival Analysis With Quantile Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 637-649, June.
    7. Li, Yi & Lin, Xihong, 2006. "Semiparametric Normal Transformation Models for Spatially Correlated Survival Data," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 591-603, June.
    8. Zeng, Donglin & Yin, Guosheng & Ibrahim, Joseph G., 2006. "Semiparametric Transformation Models for Survival Data With a Cure Fraction," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 670-684, June.
    9. Mao, Meng & Wang, Jane-Ling, 2010. "Semiparametric Efficient Estimation for a Class of Generalized Proportional Odds Cure Models," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 302-311.
    10. Stephen Portnoy & Guixian Lin, 2010. "Asymptotics for censored regression quantiles," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(1), pages 115-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peizhi Li & Yingwei Peng & Ping Jiang & Qingli Dong, 2020. "A support vector machine based semiparametric mixture cure model," Computational Statistics, Springer, vol. 35(3), pages 931-945, September.
    2. Yue Zhao & Ingrid Van Keilegom & Shanshan Ding, 2022. "Envelopes for censored quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1562-1585, December.
    3. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    4. Suvra Pal & Yingwei Peng & Wisdom Aselisewine, 2024. "A new approach to modeling the cure rate in the presence of interval censored data," Computational Statistics, Springer, vol. 39(5), pages 2743-2769, July.
    5. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Rejoinder on: Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 513-520, June.
    6. Hao, Meiling & Lin, Yuanyuan & Shen, Guohao & Su, Wen, 2023. "Nonparametric inference on smoothed quantile regression process," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    7. Yuanshan Wu & Guosheng Yin, 2017. "Multiple imputation for cure rate quantile regression with censored data," Biometrics, The International Biometric Society, vol. 73(1), pages 94-103, March.
    8. Naveen Narisetty & Roger Koenker, 2019. "Censored quantile regression survival models with a cure proportion," CeMMAP working papers CWP56/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Zexi Cai & Tony Sit, 2023. "On interquantile smoothness of censored quantile regression with induced smoothing," Biometrics, The International Biometric Society, vol. 79(4), pages 3549-3563, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyu Hyun Kim & Daniel J. Caplan & Sangwook Kang, 2023. "Smoothed quantile regression for censored residual life," Computational Statistics, Springer, vol. 38(2), pages 1001-1022, June.
    2. Xiaoyan Sun & Limin Peng & Yijian Huang & HuiChuan J. Lai, 2016. "Generalizing Quantile Regression for Counting Processes With Applications to Recurrent Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 145-156, March.
    3. Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
    4. Tang, Yanlin & Wang, Huixia Judy, 2015. "Penalized regression across multiple quantiles under random censoring," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 132-146.
    5. Yuanshan Wu & Guosheng Yin, 2017. "Multiple imputation for cure rate quantile regression with censored data," Biometrics, The International Biometric Society, vol. 73(1), pages 94-103, March.
    6. Peng, Limin, 2012. "Self-consistent estimation of censored quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 368-379.
    7. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    8. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    10. Miguel A Delgado & Andrés García-Suaza & Pedro H C Sant’Anna, 2022. "Distribution regression in duration analysis: an application to unemployment spells [Lecture notes in statistics: Proceedings]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 675-698.
    11. Hu, Tao & Xiang, Liming, 2016. "Partially linear transformation cure models for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 257-269.
    12. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 2019. "Weighted quantile regression for censored data with application to export duration data," Statistical Papers, Springer, vol. 60(4), pages 1161-1192, August.
    13. Akram Yazdani & Hojjat Zeraati & Mehdi Yaseri & Shahpar Haghighat & Ahmad Kaviani, 2022. "Laplace regression with clustered censored data," Computational Statistics, Springer, vol. 37(3), pages 1041-1068, July.
    14. Hu, Tao & Xiang, Liming, 2013. "Efficient estimation for semiparametric cure models with interval-censored data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 139-151.
    15. Frumento, Paolo & Bottai, Matteo, 2017. "An estimating equation for censored and truncated quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 53-63.
    16. Lin, Guixian & He, Xuming & Portnoy, Stephen, 2012. "Quantile regression with doubly censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 797-812.
    17. Jin-Jian Hsieh & Hong-Rui Wang, 2018. "Quantile regression based on counting process approach under semi-competing risks data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 395-419, April.
    18. Jung-Yu Cheng & Shinn-Jia Tzeng, 2014. "Quantile regression of right-censored length-biased data using the Buckley–James-type method," Computational Statistics, Springer, vol. 29(6), pages 1571-1592, December.
    19. Portnoy, Stephen, 2014. "The jackknife’s edge: Inference for censored regression quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 273-281.
    20. Shuang Ji & Limin Peng & Yu Cheng & HuiChuan Lai, 2012. "Quantile Regression for Doubly Censored Data," Biometrics, The International Biometric Society, vol. 68(1), pages 101-112, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1517-1531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.