IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v40y2013i4p823-842.html
   My bibliography  Save this article

Exploring spatial dependence in area-level random effect model for disaggregate-level crop yield estimation

Author

Listed:
  • Hukum Chandra

Abstract

This paper describes an application of small area estimation (SAE) techniques under area-level spatial random effect models when only area (or district or aggregated) level data are available. In particular, the SAE approach is applied to produce district-level model-based estimates of crop yield for paddy in the state of Uttar Pradesh in India using the data on crop-cutting experiments supervised under the Improvement of Crop Statistics scheme and the secondary data from the Population Census. The diagnostic measures are illustrated to examine the model assumptions as well as reliability and validity of the generated model-based small area estimates. The results show a considerable gain in precision in model-based estimates produced applying SAE. Furthermore, the model-based estimates obtained by exploiting spatial information are more efficient than the one obtained by ignoring this information. However, both of these model-based estimates are more efficient than the direct survey estimate. In many districts, there is no survey data and therefore it is not possible to produce direct survey estimates for these districts. The model-based estimates generated using SAE are still reliable for such districts. These estimates produced by using SAE will provide invaluable information to policy-analysts and decision-makers.

Suggested Citation

  • Hukum Chandra, 2013. "Exploring spatial dependence in area-level random effect model for disaggregate-level crop yield estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(4), pages 823-842.
  • Handle: RePEc:taf:japsta:v:40:y:2013:i:4:p:823-842
    DOI: 10.1080/02664763.2012.756858
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.756858
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.756858?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Jamal Hossain & Sumonkanti Das & Hukum Chandra & Mohammad Amirul Islam, 2020. "Disaggregate level estimates and spatial mapping of food insecurity in Bangladesh by linking survey and census data," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-16, April.
    2. Priyanka Anjoy & Hukum Chandra & Pradip Basak, 2019. "Estimation of Disaggregate-Level Poverty Incidence in Odisha Under Area-Level Hierarchical Bayes Small Area Model," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(1), pages 251-273, July.
    3. Saurav Guha & Hukum Chandra, 2021. "Measuring disaggregate level food insecurity via multivariate small area modelling: evidence from rural districts of Uttar Pradesh, India," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(3), pages 597-615, June.
    4. Kulshreshtha, Shobhit, 2024. "Access to Information and Adoption of New Farming Practices: A Spatial Analysis," GLO Discussion Paper Series 1435, Global Labor Organization (GLO).
    5. Priyanka Anjoy, 2023. "Hierarchical Bayes Measurement Error Small Area Model for Estimation of Disaggregated Level Workers Mobility Pattern in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(2), pages 339-361, June.
    6. Saurav Guha & Hukum Chandra, 2021. "Measuring and Mapping Disaggregate Level Disparities in Food Consumption and Nutritional Status via Multivariate Small Area Modelling," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(2), pages 623-646, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:40:y:2013:i:4:p:823-842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.