IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v22y2019i1d10.1007_s11203-017-9168-2.html
   My bibliography  Save this article

Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter

Author

Listed:
  • Yaozhong Hu

    (University of Alberta)

  • David Nualart

    (University of Kansas)

  • Hongjuan Zhou

    (University of Kansas)

Abstract

This paper studies the least squares estimator (LSE) for the drift parameter of an Ornstein–Uhlenbeck process driven by fractional Brownian motion, whose observations can be made either continuously or at discrete time instants. A central limit theorem is proved when the Hurst parameter $$H \in (0, 3/4]$$ H ∈ ( 0 , 3 / 4 ] and a noncentral limit theorem is proved for $$H\in (3/4, 1)$$ H ∈ ( 3 / 4 , 1 ) . Thus, the open problem left in the previous paper (Hu and Nualart in Stat Probab Lett 80(11–12):1030–1038, 2010) is completely solved, where a central limit theorem for the least squares estimator is proved for $$H\in [1/2, 3/4)$$ H ∈ [ 1 / 2 , 3 / 4 ) . The LSE is then used to study the asymptotics for other alternative estimators, such as the ergodic type estimator.

Suggested Citation

  • Yaozhong Hu & David Nualart & Hongjuan Zhou, 2019. "Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 111-142, April.
  • Handle: RePEc:spr:sistpr:v:22:y:2019:i:1:d:10.1007_s11203-017-9168-2
    DOI: 10.1007/s11203-017-9168-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-017-9168-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-017-9168-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kubilius, K. & Mishura, Y., 2012. "The rate of convergence of Hurst index estimate for the stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3718-3739.
    2. Alexandre Brouste & Marina Kleptsyna, 2010. "Asymptotic properties of MLE for partially observed fractional diffusion system," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 1-13, April.
    3. Nualart, D. & Ortiz-Latorre, S., 2008. "Central limit theorems for multiple stochastic integrals and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 614-628, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Mehdi Haress & Yaozhong Hu, 2021. "Estimation of all parameters in the fractional Ornstein–Uhlenbeck model under discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 327-351, July.
    2. Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.
    3. Hui Jiang & Jingying Zhou, 2023. "An Exponential Nonuniform Berry–Esseen Bound for the Fractional Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1037-1058, June.
    4. Xichao Sun & Litan Yan & Yong Ge, 2022. "The Laws of Large Numbers Associated with the Linear Self-attracting Diffusion Driven by Fractional Brownian Motion and Applications," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1423-1478, September.
    5. Katsuto Tanaka & Weilin Xiao & Jun Yu, 2020. "Maximum Likelihood Estimation for the Fractional Vasicek Model," Econometrics, MDPI, vol. 8(3), pages 1-28, August.
    6. Zhou, Hongjuan & Zhou, Kenneth Q. & Li, Xianping, 2022. "Stochastic mortality dynamics driven by mixed fractional Brownian motion," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 218-238.
    7. Katsuto Tanaka, 2020. "Comparison of the LS-based estimators and the MLE for the fractional Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 415-434, July.
    8. Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Qian Yu, 2021. "Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean for general Hurst parameter," Statistical Papers, Springer, vol. 62(2), pages 795-815, April.
    10. Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
    11. Marko Voutilainen & Lauri Viitasaari & Pauliina Ilmonen & Soledad Torres & Ciprian Tudor, 2022. "Vector‐valued generalized Ornstein–Uhlenbeck processes: Properties and parameter estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 992-1022, September.
    12. Radomyra Shevchenko & Ciprian A. Tudor, 2020. "Parameter estimation for the Rosenblatt Ornstein–Uhlenbeck process with periodic mean," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 227-247, April.
    13. Pavel Kříž & Leszek Szała, 2020. "Least-Squares Estimators of Drift Parameter for Discretely Observed Fractional Ornstein–Uhlenbeck Processes," Mathematics, MDPI, vol. 8(5), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
    2. Hu, Yaozhong & Nualart, David, 2010. "Parameter estimation for fractional Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1030-1038, June.
    3. Eden, Richard & Víquez, Juan, 2015. "Nourdin–Peccati analysis on Wiener and Wiener–Poisson space for general distributions," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 182-216.
    4. Katsuto Tanaka, 2013. "Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 173-192, October.
    5. Yoon-Tae Kim & Hyun-Suk Park, 2022. "Fourth Cumulant Bound of Multivariate Normal Approximation on General Functionals of Gaussian Fields," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    6. Alexandre Brouste & Stefano Iacus, 2013. "Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package," Computational Statistics, Springer, vol. 28(4), pages 1529-1547, August.
    7. Giovanni Peccati & Murad S. Taqqu, 2008. "Stable Convergence of Multiple Wiener-Itô Integrals," Journal of Theoretical Probability, Springer, vol. 21(3), pages 527-570, September.
    8. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    9. Harnett, Daniel & Nualart, David, 2012. "Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3460-3505.
    10. Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
    11. Bardet, J.-M. & Tudor, C.A., 2010. "A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2331-2362, December.
    12. Katsuto Tanaka, 2015. "Maximum likelihood estimation for the non-ergodic fractional Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 315-332, October.
    13. Mikko S. Pakkanen & Anthony Réveillac, 2014. "Functional limit theorems for generalized variations of the fractional Brownian sheet," CREATES Research Papers 2014-14, Department of Economics and Business Economics, Aarhus University.
    14. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Limit theorems for functionals of higher order differences of Brownian semi-stationary processes," CREATES Research Papers 2009-60, Department of Economics and Business Economics, Aarhus University.
    15. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Multipower Variation for Brownian Semistationary Processes," CREATES Research Papers 2009-21, Department of Economics and Business Economics, Aarhus University.
    16. Kohei Chiba, 2020. "An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 319-353, July.
    17. Nakajima, Shohei & Shimizu, Yasutaka, 2022. "Asymptotic normality of least squares type estimators to stochastic differential equations driven by fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 187(C).
    18. Kim, Yoon Tae & Park, Hyun Suk, 2022. "Normal approximation when a chaos grade is greater than two," Statistics & Probability Letters, Elsevier, vol. 185(C).
    19. Katsuto Tanaka & Weilin Xiao & Jun Yu, 2020. "Maximum Likelihood Estimation for the Fractional Vasicek Model," Econometrics, MDPI, vol. 8(3), pages 1-28, August.
    20. Ehsan Azmoodeh & Lauri Viitasaari, 2015. "Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 205-227, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:22:y:2019:i:1:d:10.1007_s11203-017-9168-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.