IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v185y2022ics0167715222000141.html
   My bibliography  Save this article

Normal approximation when a chaos grade is greater than two

Author

Listed:
  • Kim, Yoon Tae
  • Park, Hyun Suk

Abstract

We derive an upper bound on a probabilistic distance for a normal approximation when the chaos grade of an eigenfunction of Markov diffusion generator L is greater than 2. When a chaos grade is strictly greater than 2, the upper bound, given by Bourguin et al. (2019), does not guarantee that Fn converges in distribution to a standard Gaussian distribution even when the fourth cumulant of Fn converges to 0. This means that the fourth moment theorem, discovered by Nualart and Peccati (2005), does not work. In this paper, we develop a new technique to obtain an upper bound for which the fourth moment theorem works when a chaos grade is strictly greater than 2.

Suggested Citation

  • Kim, Yoon Tae & Park, Hyun Suk, 2022. "Normal approximation when a chaos grade is greater than two," Statistics & Probability Letters, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:stapro:v:185:y:2022:i:c:s0167715222000141
    DOI: 10.1016/j.spl.2022.109389
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222000141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nualart, D. & Ortiz-Latorre, S., 2008. "Central limit theorems for multiple stochastic integrals and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 614-628, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yaozhong & Nualart, David, 2010. "Parameter estimation for fractional Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1030-1038, June.
    2. Eden, Richard & Víquez, Juan, 2015. "Nourdin–Peccati analysis on Wiener and Wiener–Poisson space for general distributions," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 182-216.
    3. Yoon-Tae Kim & Hyun-Suk Park, 2022. "Fourth Cumulant Bound of Multivariate Normal Approximation on General Functionals of Gaussian Fields," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    4. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    5. Harnett, Daniel & Nualart, David, 2012. "Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3460-3505.
    6. Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
    7. Mikko S. Pakkanen & Anthony Réveillac, 2014. "Functional limit theorems for generalized variations of the fractional Brownian sheet," CREATES Research Papers 2014-14, Department of Economics and Business Economics, Aarhus University.
    8. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Multipower Variation for Brownian Semistationary Processes," CREATES Research Papers 2009-21, Department of Economics and Business Economics, Aarhus University.
    9. Ehsan Azmoodeh & Lauri Viitasaari, 2015. "Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 205-227, October.
    10. Daniel Harnett & David Nualart, 2015. "On Simpson’s Rule and Fractional Brownian Motion with $$H = 1/10$$ H = 1 / 10," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1651-1688, December.
    11. Nourdin, Ivan & Poly, Guillaume, 2013. "Convergence in total variation on Wiener chaos," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 651-674.
    12. Harnett, Daniel & Nualart, David, 2018. "Central limit theorem for functionals of a generalized self-similar Gaussian process," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 404-425.
    13. Noreddine, Salim & Nourdin, Ivan, 2011. "On the Gaussian approximation of vector-valued multiple integrals," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1008-1017, July.
    14. José Manuel Corcuera, 2012. "New Central Limit Theorems for Functionals of Gaussian Processes and their Applications," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 477-500, September.
    15. Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
    16. Giovanni Peccati & Murad S. Taqqu, 2008. "Stable Convergence of Multiple Wiener-Itô Integrals," Journal of Theoretical Probability, Springer, vol. 21(3), pages 527-570, September.
    17. Bardet, J.-M. & Tudor, C.A., 2010. "A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2331-2362, December.
    18. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Limit theorems for functionals of higher order differences of Brownian semi-stationary processes," CREATES Research Papers 2009-60, Department of Economics and Business Economics, Aarhus University.
    19. Daniel Harnett & Arturo Jaramillo & David Nualart, 2019. "Symmetric Stochastic Integrals with Respect to a Class of Self-similar Gaussian Processes," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1105-1144, September.
    20. Viens, Frederi G., 2009. "Stein's lemma, Malliavin calculus, and tail bounds, with application to polymer fluctuation exponent," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3671-3698, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:185:y:2022:i:c:s0167715222000141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.