IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i11p3718-3739.html
   My bibliography  Save this article

The rate of convergence of Hurst index estimate for the stochastic differential equation

Author

Listed:
  • Kubilius, K.
  • Mishura, Y.

Abstract

We consider a stochastic differential equation involving a pathwise integral with respect to fractional Brownian motion. The estimates for the Hurst parameter are constructed according to first- and second-order quadratic variations of observed values of the solution. The rate of convergence of these estimates to the true value of a parameter is established when the diameter of interval partition tends to zero.

Suggested Citation

  • Kubilius, K. & Mishura, Y., 2012. "The rate of convergence of Hurst index estimate for the stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3718-3739.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:11:p:3718-3739
    DOI: 10.1016/j.spa.2012.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912001391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Christophe Breton & Jean-François Coeurjolly, 2012. "Confidence intervals for the Hurst parameter of a fractional Brownian motion based on finite sample size," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 1-26, April.
    2. Benassi, Albert & Cohen, Serge & Istas, Jacques & Jaffard, Stéphane, 1998. "Identification of filtered white noises," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 31-49, June.
    3. Jean-François Coeurjolly, 2001. "Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths," Statistical Inference for Stochastic Processes, Springer, vol. 4(2), pages 199-227, May.
    4. Coeurjolly, Jean-Francois, 2000. "Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 5(i07).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annie Tubadji & Vassilis Angelis & Peter Nijkamp, 2016. "Endogenous intangible resources and their place in the institutional hierarchy," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 36(1), pages 1-28, February.
    2. Yaozhong Hu & David Nualart & Hongjuan Zhou, 2019. "Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 111-142, April.
    3. Kubilius, K. & Skorniakov, V., 2016. "On some estimators of the Hurst index of the solution of SDE driven by a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 159-167.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sikora, Grzegorz, 2018. "Statistical test for fractional Brownian motion based on detrending moving average algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 54-62.
    2. Kęstutis Kubilius & Dmitrij Melichov, 2016. "Exact Confidence Intervals of the Extended Orey Index for Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 785-804, September.
    3. Jean-Christophe Breton & Jean-François Coeurjolly, 2012. "Confidence intervals for the Hurst parameter of a fractional Brownian motion based on finite sample size," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 1-26, April.
    4. Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.
    5. Bégyn, Arnaud, 2007. "Functional limit theorems for generalized quadratic variations of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1848-1869, December.
    6. Andreas Neuenkirch & Ivan Nourdin, 2007. "Exact Rate of Convergence of Some Approximation Schemes Associated to SDEs Driven by a Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 20(4), pages 871-899, December.
    7. Kubilius, K. & Skorniakov, V., 2016. "On some estimators of the Hurst index of the solution of SDE driven by a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 159-167.
    8. Bibinger, Markus, 2020. "Cusum tests for changes in the Hurst exponent and volatility of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 161(C).
    9. Kubilius, K., 2020. "CLT for quadratic variation of Gaussian processes and its application to the estimation of the Orey index," Statistics & Probability Letters, Elsevier, vol. 165(C).
    10. Marco Dozzi & Yuliya Mishura & Georgiy Shevchenko, 2015. "Asymptotic behavior of mixed power variations and statistical estimation in mixed models," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 151-175, July.
    11. Lee Jeonghwa, 2021. "Generalized Bernoulli process: simulation, estimation, and application," Dependence Modeling, De Gruyter, vol. 9(1), pages 141-155, January.
    12. Kubilius, K. & Skorniakov, V., 2017. "A short note on a class of statistics for estimation of the Hurst index of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 78-82.
    13. Vu, Huong T.L. & Richard, Frédéric J.P., 2020. "Statistical tests of heterogeneity for anisotropic multifractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4667-4692.
    14. Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.
    15. Frezza, Massimiliano, 2012. "Modeling the time-changing dependence in stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 45(12), pages 1510-1520.
    16. Andreas Basse-O'Connor & Mark Podolskij, 2015. "On critical cases in limit theory for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-57, Department of Economics and Business Economics, Aarhus University.
    17. John-Fritz Thony & Jean Vaillant, 2022. "Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    18. Ayache, Antoine & Lévy Véhel, Jacques, 2004. "On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 119-156, May.
    19. Marina Resta & Davide Sciutti, 2003. "Spot price dynamics in deregulated power markets," Econometrics 0312002, University Library of Munich, Germany.
    20. Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:11:p:3718-3739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.