IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i8p1352-d796519.html
   My bibliography  Save this article

Fourth Cumulant Bound of Multivariate Normal Approximation on General Functionals of Gaussian Fields

Author

Listed:
  • Yoon-Tae Kim

    (Division of Data Science and Data Science Convergence Research Center, College of Information Science, Hallym University, Chuncheon 200-702, Korea)

  • Hyun-Suk Park

    (Division of Data Science and Data Science Convergence Research Center, College of Information Science, Hallym University, Chuncheon 200-702, Korea)

Abstract

We develop a technique for obtaining the fourth moment bound on the normal approximation of F , where F is an R d -valued random vector whose components are functionals of Gaussian fields. This study transcends the case of vectors of multiple stochastic integrals, which has been the subject of research so far. We perform this task by investigating the relationship between the expectations of two operators Γ and Γ * . Here, the operator Γ was introduced in Noreddine and Nourdin (2011) [ On the Gaussian approximation of vector-valued multiple integrals. J. Multi. Anal.], and Γ * is a muilti-dimensional version of the operator used in Kim and Park (2018) [ An Edgeworth expansion for functionals of Gaussian fields and its applications , stoch. proc. their Appl.]. In the specific case where F is a random variable belonging to the vector-valued multiple integrals, the conditions in the general case of F for the fourth moment bound are naturally satisfied and our method yields a better estimate than that obtained by the previous methods. In the case of d = 1 , the method developed here shows that, even in the case of general functionals of Gaussian fields, the fourth moment theorem holds without conditions for the multi-dimensional case.

Suggested Citation

  • Yoon-Tae Kim & Hyun-Suk Park, 2022. "Fourth Cumulant Bound of Multivariate Normal Approximation on General Functionals of Gaussian Fields," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1352-:d:796519
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/8/1352/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/8/1352/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noreddine, Salim & Nourdin, Ivan, 2011. "On the Gaussian approximation of vector-valued multiple integrals," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1008-1017, July.
    2. Nualart, D. & Ortiz-Latorre, S., 2008. "Central limit theorems for multiple stochastic integrals and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 614-628, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Octav Olteanu, 2022. "Markov Moment Problem and Sandwich Conditions on Bounded Linear Operators in Terms of Quadratic Forms," Mathematics, MDPI, vol. 10(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eden, Richard & Víquez, Juan, 2015. "Nourdin–Peccati analysis on Wiener and Wiener–Poisson space for general distributions," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 182-216.
    2. Hu, Yaozhong & Nualart, David, 2010. "Parameter estimation for fractional Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1030-1038, June.
    3. Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
    4. Giovanni Peccati & Murad S. Taqqu, 2008. "Stable Convergence of Multiple Wiener-Itô Integrals," Journal of Theoretical Probability, Springer, vol. 21(3), pages 527-570, September.
    5. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    6. Kim, Yoon Tae & Park, Hyun Suk, 2018. "An Edgeworth expansion for functionals of Gaussian fields and its applications," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 3967-3999.
    7. Harnett, Daniel & Nualart, David, 2012. "Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3460-3505.
    8. Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
    9. Bardet, J.-M. & Tudor, C.A., 2010. "A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2331-2362, December.
    10. Mikko S. Pakkanen & Anthony Réveillac, 2014. "Functional limit theorems for generalized variations of the fractional Brownian sheet," CREATES Research Papers 2014-14, Department of Economics and Business Economics, Aarhus University.
    11. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Limit theorems for functionals of higher order differences of Brownian semi-stationary processes," CREATES Research Papers 2009-60, Department of Economics and Business Economics, Aarhus University.
    12. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Multipower Variation for Brownian Semistationary Processes," CREATES Research Papers 2009-21, Department of Economics and Business Economics, Aarhus University.
    13. Kim, Yoon Tae & Park, Hyun Suk, 2022. "Normal approximation when a chaos grade is greater than two," Statistics & Probability Letters, Elsevier, vol. 185(C).
    14. Ehsan Azmoodeh & Lauri Viitasaari, 2015. "Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 205-227, October.
    15. Daniel Harnett & Arturo Jaramillo & David Nualart, 2019. "Symmetric Stochastic Integrals with Respect to a Class of Self-similar Gaussian Processes," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1105-1144, September.
    16. Viens, Frederi G., 2009. "Stein's lemma, Malliavin calculus, and tail bounds, with application to polymer fluctuation exponent," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3671-3698, October.
    17. Daniel Harnett & David Nualart, 2015. "On Simpson’s Rule and Fractional Brownian Motion with $$H = 1/10$$ H = 1 / 10," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1651-1688, December.
    18. Xichao Sun & Litan Yan & Yong Ge, 2022. "The Laws of Large Numbers Associated with the Linear Self-attracting Diffusion Driven by Fractional Brownian Motion and Applications," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1423-1478, September.
    19. Yaozhong Hu & David Nualart & Hongjuan Zhou, 2019. "Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 111-142, April.
    20. Nourdin, Ivan & Poly, Guillaume, 2013. "Convergence in total variation on Wiener chaos," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 651-674.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1352-:d:796519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.