IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i10p3460-3505.html
   My bibliography  Save this article

Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes

Author

Listed:
  • Harnett, Daniel
  • Nualart, David

Abstract

For a Gaussian process X and smooth function f, we consider a Stratonovich integral of f(X), defined as the weak limit, if it exists, of a sequence of Riemann sums. We give covariance conditions on X such that the sequence converges in law. This gives a change-of-variable formula in law with a correction term which is an Itô integral of f‴ with respect to a Gaussian martingale independent of X. The proof uses Malliavin calculus and a central limit theorem from Nourdin and Nualart (2010) [8]. This formula was known for fBm with H=1/6 Nourdin et al. (2010) [9]. We extend this to a larger class of Gaussian processes.

Suggested Citation

  • Harnett, Daniel & Nualart, David, 2012. "Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3460-3505.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:10:p:3460-3505
    DOI: 10.1016/j.spa.2012.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912001366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei, Pedro & Nualart, David, 2009. "A decomposition of the bifractional Brownian motion and some applications," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 619-624, March.
    2. Tomasz Bojdecki & Luis G. Gorostiza & Anna Talarczyk, 2004. "Sub-fractional Brownian motion and its relation to occupation times," RePAd Working Paper Series lrsp-TRS376, Département des sciences administratives, UQO.
    3. Bojdecki, Tomasz & Gorostiza, Luis G. & Talarczyk, Anna, 2004. "Sub-fractional Brownian motion and its relation to occupation times," Statistics & Probability Letters, Elsevier, vol. 69(4), pages 405-419, October.
    4. Russo, Francesco & Tudor, Ciprian A., 2006. "On bifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 830-856, May.
    5. Nualart, D. & Ortiz-Latorre, S., 2008. "Central limit theorems for multiple stochastic integrals and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 614-628, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirzaee, Farshid & Hadadiyan, Elham, 2017. "Solving system of linear Stratonovich Volterra integral equations via modification of hat functions," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 254-264.
    2. Daniel Harnett & David Nualart, 2015. "On Simpson’s Rule and Fractional Brownian Motion with $$H = 1/10$$ H = 1 / 10," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1651-1688, December.
    3. Daniel Harnett & Arturo Jaramillo & David Nualart, 2019. "Symmetric Stochastic Integrals with Respect to a Class of Self-similar Gaussian Processes," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1105-1144, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skorniakov, V., 2019. "On a covariance structure of some subset of self-similar Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 1903-1920.
    2. Harnett, Daniel & Nualart, David, 2018. "Central limit theorem for functionals of a generalized self-similar Gaussian process," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 404-425.
    3. Daniel Harnett & Arturo Jaramillo & David Nualart, 2019. "Symmetric Stochastic Integrals with Respect to a Class of Self-similar Gaussian Processes," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1105-1144, September.
    4. Slominski, Leszek & Ziemkiewicz, Bartosz, 2009. "On weak approximations of integrals with respect to fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 543-552, February.
    5. Nualart, David & Xu, Fangjun, 2019. "Asymptotic behavior for an additive functional of two independent self-similar Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3981-4008.
    6. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    7. Araneda, Axel A. & Bertschinger, Nils, 2021. "The sub-fractional CEV model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    8. Cheng, Ziling, 2024. "Occupation times for age-structured branching processes," Statistics & Probability Letters, Elsevier, vol. 211(C).
    9. Swanson, Jason, 2011. "Fluctuations of the empirical quantiles of independent Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 479-514, March.
    10. Bodo Herzog, 2023. "Fractional Stochastic Search Algorithms: Modelling Complex Systems via AI," Mathematics, MDPI, vol. 11(9), pages 1-11, April.
    11. Yan, Litan & Shen, Guangjun, 2010. "On the collision local time of sub-fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 296-308, March.
    12. Wang, Wei & Cai, Guanghui & Tao, Xiangxing, 2021. "Pricing geometric asian power options in the sub-fractional brownian motion environment," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    13. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2005. "A Long Range Dependence Stable Process and an Infinite Variance Branching System," RePAd Working Paper Series lrsp-TRS425, Département des sciences administratives, UQO.
    14. Tudor, Constantin, 2008. "Inner product spaces of integrands associated to subfractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2201-2209, October.
    15. Axel A. Araneda, 2021. "Price modelling under generalized fractional Brownian motion," Papers 2108.12042, arXiv.org, revised Nov 2023.
    16. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2004. "Functional Limit Theorems for Occupation Time Fluctuations of Branching Systems in the Cases of Large and Critical Dimensions," RePAd Working Paper Series lrsp-TRS404, Département des sciences administratives, UQO.
    17. Wang, XiaoTian & Yang, ZiJian & Cao, PiYao & Wang, ShiLin, 2021. "The closed-form option pricing formulas under the sub-fractional Poisson volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    18. Mishura, Yuliya & Yoshidae, Nakahiro, 2022. "Divergence of an integral of a process with small ball estimate," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 1-24.
    19. Luis G. Gorostiza & Reyla A. Navarro & Eliane R. Rodrigues, 2004. "Some Long-Range Dependence Processes Arising from Fluctuations of Particle Systems," RePAd Working Paper Series lrsp-TRS401, Département des sciences administratives, UQO.
    20. Nenghui Kuang & Bingquan Liu, 2018. "Least squares estimator for $$\alpha $$ α -sub-fractional bridges," Statistical Papers, Springer, vol. 59(3), pages 893-912, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:10:p:3460-3505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.