IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v20y2017i1d10.1007_s11203-016-9136-2.html
   My bibliography  Save this article

Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean

Author

Listed:
  • Herold Dehling

    (Ruhr-Universität Bochum)

  • Brice Franke

    (Université de Bretagne Occidentale)

  • Jeannette H. C. Woerner

    (Technische Universität Dortmund)

Abstract

We construct a least squares estimator for the drift parameters of a fractional Ornstein Uhlenbeck process with periodic mean function and long range dependence. For this estimator we prove consistency and asymptotic normality. In contrast to the classical fractional Ornstein Uhlenbeck process without periodic mean function the rate of convergence is slower depending on the Hurst parameter H, namely $$n^{1-H}$$ n 1 - H .

Suggested Citation

  • Herold Dehling & Brice Franke & Jeannette H. C. Woerner, 2017. "Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 1-14, April.
  • Handle: RePEc:spr:sistpr:v:20:y:2017:i:1:d:10.1007_s11203-016-9136-2
    DOI: 10.1007/s11203-016-9136-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-016-9136-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-016-9136-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brice Franke & Thomas Kott, 2013. "Parameter estimation for the drift of a time inhomogeneous jump diffusion process," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(2), pages 145-168, May.
    2. Herold Dehling & Brice Franke & Thomas Kott, 2010. "Drift estimation for a periodic mean reversion process," Statistical Inference for Stochastic Processes, Springer, vol. 13(3), pages 175-192, October.
    3. Michael Diether, 2012. "Wavelet estimation in diffusions with periodicity," Statistical Inference for Stochastic Processes, Springer, vol. 15(3), pages 257-284, October.
    4. Alexandre Brouste & Marina Kleptsyna, 2010. "Asymptotic properties of MLE for partially observed fractional diffusion system," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 1-13, April.
    5. Hu, Yaozhong & Nualart, David, 2010. "Parameter estimation for fractional Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1030-1038, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reinhard Höpfner, 2021. "Polynomials under Ornstein–Uhlenbeck noise and an application to inference in stochastic Hodgkin–Huxley systems," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 35-59, April.
    2. Giacomo Ascione & Yuliya Mishura & Enrica Pirozzi, 2021. "Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 53-84, March.
    3. Selim Amrouni & Aymeric Moulin & Tucker Balch, 2022. "CTMSTOU driven markets: simulated environment for regime-awareness in trading policies," Papers 2202.00941, arXiv.org, revised Feb 2022.
    4. Qian Yu, 2021. "Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean for general Hurst parameter," Statistical Papers, Springer, vol. 62(2), pages 795-815, April.
    5. Radomyra Shevchenko & Ciprian A. Tudor, 2020. "Parameter estimation for the Rosenblatt Ornstein–Uhlenbeck process with periodic mean," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 227-247, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
    2. Katsuto Tanaka, 2013. "Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 173-192, October.
    3. Qian Yu, 2021. "Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean for general Hurst parameter," Statistical Papers, Springer, vol. 62(2), pages 795-815, April.
    4. Katsuto Tanaka, 2015. "Maximum likelihood estimation for the non-ergodic fractional Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 315-332, October.
    5. Katsuto Tanaka & Weilin Xiao & Jun Yu, 2020. "Maximum Likelihood Estimation for the Fractional Vasicek Model," Econometrics, MDPI, vol. 8(3), pages 1-28, August.
    6. Reinhard Höpfner, 2021. "Polynomials under Ornstein–Uhlenbeck noise and an application to inference in stochastic Hodgkin–Huxley systems," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 35-59, April.
    7. Radomyra Shevchenko & Ciprian A. Tudor, 2020. "Parameter estimation for the Rosenblatt Ornstein–Uhlenbeck process with periodic mean," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 227-247, April.
    8. Liu, Yanghui & Nualart, Eulalia & Tindel, Samy, 2019. "LAN property for stochastic differential equations with additive fractional noise and continuous time observation," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2880-2902.
    9. Matthieu Garcin, 2019. "Estimation of Hurst exponents in a stationary framework [Estimation d'exposants de Hurst dans un cadre stationnaire]," Post-Print hal-02163662, HAL.
    10. Rachid Belfadli & Khalifa Es-Sebaiy & Fatima-Ezzahra Farah, 2022. "Statistical analysis of the non-ergodic fractional Ornstein–Uhlenbeck process with periodic mean," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 885-911, October.
    11. Alexandre Brouste & Stefano Iacus, 2013. "Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package," Computational Statistics, Springer, vol. 28(4), pages 1529-1547, August.
    12. Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
    13. Khalifa Es-Sebaiy & Mohammed Es.Sebaiy, 2021. "Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 409-436, June.
    14. Zhang, Pu & Xiao, Wei-lin & Zhang, Xi-li & Niu, Pan-qiang, 2014. "Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation," Economic Modelling, Elsevier, vol. 36(C), pages 198-203.
    15. Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.
    16. Dominique Dehay, 2015. "Parameter maximum likelihood estimation problem for time periodic modulated drift Ornstein Uhlenbeck processes," Statistical Inference for Stochastic Processes, Springer, vol. 18(1), pages 69-98, April.
    17. Pramesti Getut, 2023. "Parameter least-squares estimation for time-inhomogeneous Ornstein–Uhlenbeck process," Monte Carlo Methods and Applications, De Gruyter, vol. 29(1), pages 1-32, March.
    18. Fuqi Chen & Rogemar Mamon & Sévérien Nkurunziza, 2018. "Inference for a change-point problem under a generalised Ornstein–Uhlenbeck setting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 807-853, August.
    19. Andreas Neuenkirch & Samy Tindel, 2014. "A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise," Statistical Inference for Stochastic Processes, Springer, vol. 17(1), pages 99-120, April.
    20. Kohei Chiba, 2020. "An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 319-353, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:20:y:2017:i:1:d:10.1007_s11203-016-9136-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.