IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i8d10.1007_s11192-024-05085-1.html
   My bibliography  Save this article

How to measure interdisciplinary research? A systemic design for the model of measurement

Author

Listed:
  • Giulio Giacomo Cantone

    (University of Sussex)

Abstract

Interdisciplinarity is a polysemous concept with multiple, reasoned and intuitive, interpretations across scholars and policy-makers. Historically, quantifying the interdisciplinarity of research has been challenging due to the variety of methods used to identify metadata, taxonomies, and mathematical formulas. This has resulted in considerable uncertainty about the ability of quantitative models to provide clear insights for policy-making. This study proposes a systemic design, grounded in an advanced literature review, to demonstrate that the quantification of the interdisciplinarity of research can be treated as a process of decision-making in mathematical modelling, where alternatives choices are evaluated based on how closely their mathematical properties align with the theoretical objectives of the research design. The study addresses modeling choices regarding the stylisation of metadata into units of observation, and the operational definition of the conceptual dimensions of interdisciplinarity, presenting both established and novel methods and formulas. The final section discusses advanced topics in modelling the measurement, including a dedicated discussion on the difference in analysing the status of papers versus collective bodies of research; and distinguishing between reflective, formative, and inferential causal models of interdisciplinary research.

Suggested Citation

  • Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:8:d:10.1007_s11192-024-05085-1
    DOI: 10.1007/s11192-024-05085-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05085-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05085-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Paruolo & Michaela Saisana & Andrea Saltelli, 2013. "Ratings and rankings: voodoo or science?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 609-634, June.
    2. Nicholas Bloom & Charles I. Jones & John Van Reenen & Michael Webb, 2020. "Are Ideas Getting Harder to Find?," American Economic Review, American Economic Association, vol. 110(4), pages 1104-1144, April.
    3. Vincent Larivière & Yves Gingras, 2010. "On the relationship between interdisciplinarity and scientific impact," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(1), pages 126-131, January.
    4. Bryan Kelly & Dimitris Papanikolaou & Amit Seru & Matt Taddy, 2021. "Measuring Technological Innovation over the Long Run," American Economic Review: Insights, American Economic Association, vol. 3(3), pages 303-320, September.
    5. P. Zhou & B. Ang & D. Zhou, 2010. "Weighting and Aggregation in Composite Indicator Construction: a Multiplicative Optimization Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 96(1), pages 169-181, March.
    6. Hair, Joe F. & Howard, Matt C. & Nitzl, Christian, 2020. "Assessing measurement model quality in PLS-SEM using confirmatory composite analysis," Journal of Business Research, Elsevier, vol. 109(C), pages 101-110.
    7. Alexis-Michel Mugabushaka & Anthi Kyriakou & Theo Papazoglou, 2016. "Bibliometric indicators of interdisciplinarity: the potential of the Leinster–Cobbold diversity indices to study disciplinary diversity," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 593-607, May.
    8. Loet Leydesdorff & Caroline S. Wagner & Lutz Bornmann, 2018. "Betweenness and diversity in journal citation networks as measures of interdisciplinarity—A tribute to Eugene Garfield," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 567-592, February.
    9. Leah G. Nichols, 2014. "A topic model approach to measuring interdisciplinarity at the National Science Foundation," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 741-754, September.
    10. Irwin Feller, 2006. "Multiple actors, multiple settings, multiple criteria: issues in assessing interdisciplinary research," Research Evaluation, Oxford University Press, vol. 15(1), pages 5-15, April.
    11. Bornmann, Lutz & Tekles, Alexander & Zhang, Helena H. & Ye, Fred Y., 2019. "Do we measure novelty when we analyze unusual combinations of cited references? A validation study of bibliometric novelty indicators based on F1000Prime data," Journal of Informetrics, Elsevier, vol. 13(4).
    12. Hessels, Laurens K. & van Lente, Harro, 2008. "Re-thinking new knowledge production: A literature review and a research agenda," Research Policy, Elsevier, vol. 37(4), pages 740-760, May.
    13. Giannis Karagiannis, 2017. "On aggregate composite indicators," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 741-746, July.
    14. Jian Xu & Yi Bu & Ying Ding & Sinan Yang & Hongli Zhang & Chen Yu & Lin Sun, 2018. "Understanding the formation of interdisciplinary research from the perspective of keyword evolution: a case study on joint attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 973-995, November.
    15. Lin Zhang & Beibei Sun & Zaida Chinchilla-Rodríguez & Lixin Chen & Ying Huang, 2018. "Interdisciplinarity and collaboration: on the relationship between disciplinary diversity in departmental affiliations and reference lists," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 271-291, October.
    16. Vincent Larivière & Yves Gingras, 2010. "On the relationship between interdisciplinarity and scientific impact," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(1), pages 126-131, January.
    17. Grit Laudel, 2006. "Conclave in the Tower of Babel: how peers review interdisciplinary research proposals," Research Evaluation, Oxford University Press, vol. 15(1), pages 57-68, April.
    18. Matteo Mazziotta & Adriano Pareto, 2019. "Use and Misuse of PCA for Measuring Well-Being," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(2), pages 451-476, April.
    19. Leydesdorff, Loet & Rafols, Ismael, 2011. "Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations," Journal of Informetrics, Elsevier, vol. 5(1), pages 87-100.
    20. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    21. Weiping Yue & Concepción S. Wilson, 2004. "Measuring the citation impact of research journals in clinical neurology: A structural equation modelling analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 60(3), pages 317-332, August.
    22. Wang, Jian & Veugelers, Reinhilde & Stephan, Paula, 2017. "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Research Policy, Elsevier, vol. 46(8), pages 1416-1436.
    23. Vancraeynest, Bram & Pham, Hoang-Son & Ali-Eldin, Amr, 2024. "A new approach to computing the distances between research disciplines based on researcher collaborations and similarity measurement techniques," Journal of Informetrics, Elsevier, vol. 18(3).
    24. Wolfgang Glänzel & Bart Thijs & András Schubert & Koenraad Debackere, 2009. "Subfield-specific normalized relative indicators and a new generation of relational charts: Methodological foundations illustrated on the assessment of institutional research performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(1), pages 165-188, January.
    25. Rüdiger Mutz, 2022. "Diversity and interdisciplinarity: Should variety, balance and disparity be combined as a product or better as a sum? An information-theoretical and statistical estimation approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7397-7414, December.
    26. Leo Egghe & Ronald Rousseau, 2003. "A measure for the cohesion of weighted networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(3), pages 193-202, February.
    27. Richard Klavans & Kevin W. Boyack, 2017. "Which Type of Citation Analysis Generates the Most Accurate Taxonomy of Scientific and Technical Knowledge?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(4), pages 984-998, April.
    28. Diamantopoulos, Adamantios & Riefler, Petra & Roth, Katharina P., 2008. "Advancing formative measurement models," Journal of Business Research, Elsevier, vol. 61(12), pages 1203-1218, December.
    29. Coltman, Tim & Devinney, Timothy M. & Midgley, David F. & Venaik, Sunil, 2008. "Formative versus reflective measurement models: Two applications of formative measurement," Journal of Business Research, Elsevier, vol. 61(12), pages 1250-1262, December.
    30. Jarvis, Cheryl Burke & MacKenzie, Scott B & Podsakoff, Philip M, 2003. "A Critical Review of Construct Indicators and Measurement Model Misspecification in Marketing and Consumer Research," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 30(2), pages 199-218, September.
    31. Lin Zhang & Ronald Rousseau & Wolfgang Glänzel, 2016. "Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(5), pages 1257-1265, May.
    32. Hackett, Edward J. & Leahey, Erin & Parker, John N. & Rafols, Ismael & Hampton, Stephanie E. & Corte, Ugo & Chavarro, Diego & Drake, John M. & Penders, Bart & Sheble, Laura & Vermeulen, Niki & Vision,, 2021. "Do synthesis centers synthesize? A semantic analysis of topical diversity in research," Research Policy, Elsevier, vol. 50(1).
    33. Haeussler, Carolin & Sauermann, Henry, 2020. "Division of labor in collaborative knowledge production: The role of team size and interdisciplinarity," Research Policy, Elsevier, vol. 49(6).
    34. Terry L. Anderson, 2015. "If Hayek and Coase Were Environmentalists: Linking Economics and Ecology," Supreme Court Economic Review, University of Chicago Press, vol. 23(1), pages 121-140.
    35. Michèle Lamont & Grégoire Mallard & Joshua Guetzkow, 2006. "Beyond blind faith: overcoming the obstacles to interdisciplinary evaluation," Research Evaluation, Oxford University Press, vol. 15(1), pages 43-55, April.
    36. Zanella, Andreia & Camanho, Ana S. & Dias, Teresa G., 2015. "Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(2), pages 517-530.
    37. Jian Wang & Bart Thijs & Wolfgang Glänzel, 2015. "Interdisciplinarity and Impact: Distinct Effects of Variety, Balance, and Disparity," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    38. Davies, Andrew & Manning, Stephan & Söderlund, Jonas, 2018. "When neighboring disciplines fail to learn from each other: The case of innovation and project management research," Research Policy, Elsevier, vol. 47(5), pages 965-979.
    39. Ugo Moschini & Elena Fenialdi & Cinzia Daraio & Giancarlo Ruocco & Elisa Molinari, 2020. "A comparison of three multidisciplinarity indices based on the diversity of Scopus subject areas of authors’ documents, their bibliography and their citing papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1145-1158, November.
    40. Jiancheng Guan & Nan Ma, 2009. "Structural equation model with PLS path modeling for an integrated system of publicly funded basic research," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 683-698, December.
    41. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    42. Keisuke Okamura, 2019. "Interdisciplinarity revisited: evidence for research impact and dynamism," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-9, December.
    43. Ronald Rousseau, 2018. "The repeat rate: from Hirschman to Stirling," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 645-653, July.
    44. Daniele Fanelli & Wolfgang Glänzel, 2013. "Bibliometric Evidence for a Hierarchy of the Sciences," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    45. James E. Foster & Mark McGillivray & Suman Seth, 2013. "Composite Indices: Rank Robustness, Statistical Association, and Redundancy," Econometric Reviews, Taylor & Francis Journals, vol. 32(1), pages 35-56, January.
    46. Karolina Urbanska & Sylvie Huet & Serge Guimond, 2019. "Does increased interdisciplinary contact among hard and social scientists help or hinder interdisciplinary research?," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-20, September.
    47. Tahamtan, Iman & Bornmann, Lutz, 2018. "Creativity in science and the link to cited references: Is the creative potential of papers reflected in their cited references?," Journal of Informetrics, Elsevier, vol. 12(3), pages 906-930.
    48. Uri Simonsohn & Joseph P. Simmons & Leif D. Nelson, 2020. "Specification curve analysis," Nature Human Behaviour, Nature, vol. 4(11), pages 1208-1214, November.
    49. Lorenzo Cassi & Wilfriedo Mescheba & Élisabeth Turckheim, 2014. "How to evaluate the degree of interdisciplinarity of an institution?," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1871-1895, December.
    50. Lorenzo Cassi & Raphaël Champeimont & Wilfriedo Mescheba & Élisabeth de Turckheim, 2017. "Analysing Institutions Interdisciplinarity by Extensive Use of Rao-Stirling Diversity Index," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.
    51. Fontana, Magda & Iori, Martina & Montobbio, Fabio & Sinatra, Roberta, 2020. "New and atypical combinations: An assessment of novelty and interdisciplinarity," Research Policy, Elsevier, vol. 49(7).
    52. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Zhang, Lin, 2018. "A comparison of two approaches for measuring interdisciplinary research output: The disciplinary diversity of authors vs the disciplinary diversity of the reference list," Journal of Informetrics, Elsevier, vol. 12(4), pages 1182-1193.
    53. Okamura, Keisuke, 2020. "Affinity-based extension of non-extensive entropy and statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    54. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    55. Jonathan M. Levitt & Mike Thelwall, 2008. "Is multidisciplinary research more highly cited? A macrolevel study," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(12), pages 1973-1984, October.
    56. Uri Simonsohn & Joseph P. Simmons & Leif D. Nelson, 2020. "Publisher Correction: Specification curve analysis," Nature Human Behaviour, Nature, vol. 4(11), pages 1215-1215, November.
    57. Sander Zwanenburg & Maryam Nakhoda & Peter Whigham, 2022. "Toward greater consistency and validity in measuring interdisciplinarity: a systematic and conceptual evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7769-7788, December.
    58. Xuefeng Wang & Zhinan Wang & Ying Huang & Yun Chen & Yi Zhang & Huichao Ren & Rongrong Li & Jinhui Pang, 2017. "Measuring interdisciplinarity of a research system: detecting distinction between publication categories and citation categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2023-2039, June.
    59. Loet Leydesdorff, 2005. "Similarity measures, author cocitation analysis, and information theory," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 56(7), pages 769-772, May.
    60. Manuel Goyanes & Márton Demeter & Aurea Grané & Irene Albarrán-Lozano & Homero Gil de Zúñiga, 2020. "A mathematical approach to assess research diversity: operationalization and applicability in communication sciences, political science, and beyond," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2299-2322, December.
    61. Alan L Porter & J David Roessner & Alex S Cohen & Marty Perreault, 2006. "Interdisciplinary research: meaning, metrics and nurture," Research Evaluation, Oxford University Press, vol. 15(3), pages 187-195, December.
    62. Terry L. Anderson, 2015. "If Hayek and Coase Were Environmentalists: Linking Economics and Ecology," Economics Working Papers 15102, Hoover Institution, Stanford University.
    63. Huutoniemi, Katri & Klein, Julie Thompson & Bruun, Henrik & Hukkinen, Janne, 2010. "Analyzing interdisciplinarity: Typology and indicators," Research Policy, Elsevier, vol. 39(1), pages 79-88, February.
    64. Lutz Bornmann & Benedetto Lepori, 2024. "The use of ChatGPT to find similar institutions for institutional benchmarking," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3593-3598, June.
    65. Francesco Vidoli & Elisa Fusco & Claudio Mazziotta, 2015. "Non-compensability in Composite Indicators: A Robust Directional Frontier Method," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 122(3), pages 635-652, July.
    66. Henk F. Moed & Gali Halevi, 2015. "Multidimensional assessment of scholarly research impact," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(10), pages 1988-2002, October.
    67. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    68. Yi Bu & Mengyang Li & Weiye Gu & Win‐bin Huang, 2021. "Topic diversity: A discipline scheme‐free diversity measurement for journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(5), pages 523-539, May.
    69. Bethany K Laursen & Nicole Motzer & Kelly J Anderson, 2022. "Pathways for assessing interdisciplinarity: A systematic review," Research Evaluation, Oxford University Press, vol. 31(3), pages 326-343.
    70. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.
    71. Loet Leydesdorff, 2018. "Diversity and interdisciplinarity: how can one distinguish and recombine disparity, variety, and balance?," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 2113-2121, September.
    72. Chiara Carusi & Giuseppe Bianchi, 2020. "A look at interdisciplinarity using bipartite scholar/journal networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 867-894, February.
    73. Alexander J. Gates & Qing Ke & Onur Varol & Albert-László Barabási, 2019. "Nature’s reach: narrow work has broad impact," Nature, Nature, vol. 575(7781), pages 32-34, November.
    74. Lin Zhang & Beibei Sun & Fei Shu & Ying Huang, 2022. "Comparing paper level classifications across different methods and systems: an investigation of Nature publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7633-7651, December.
    75. Silva, Filipi N. & Amancio, Diego R. & Bardosova, Maria & Costa, Luciano da F. & Oliveira, Osvaldo N., 2016. "Using network science and text analytics to produce surveys in a scientific topic," Journal of Informetrics, Elsevier, vol. 10(2), pages 487-502.
    76. Liv Langfeldt, 2006. "The policy challenges of peer review: managing bias, conflict of interests and interdisciplinary assessments," Research Evaluation, Oxford University Press, vol. 15(1), pages 31-41, April.
    77. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Di Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    78. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    79. Lars Leszczensky & Tobias Wolbring, 2022. "How to Deal With Reverse Causality Using Panel Data? Recommendations for Researchers Based on a Simulation Study," Sociological Methods & Research, , vol. 51(2), pages 837-865, May.
    80. Yi Bu & Dakota S. Murray & Ying Ding & Yong Huang & Yiming Zhao, 2018. "Measuring the stability of scientific collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 463-479, February.
    81. Fei Shu & Jesse David Dinneen & Shiji Chen, 2022. "Measuring the disparity among scientific disciplines using Library of Congress Subject Headings," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3613-3628, June.
    82. Jian Qin & F. W. Lancaster & Bryce Allen, 1997. "Types and levels of collaboration in interdisciplinary research in the sciences," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 48(10), pages 893-916, October.
    83. Chen, Shiji & Qiu, Junping & Arsenault, Clément & Larivière, Vincent, 2021. "Exploring the interdisciplinarity patterns of highly cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
    84. Zuo, Zhiya & Zhao, Kang, 2018. "The more multidisciplinary the better? – The prevalence and interdisciplinarity of research collaborations in multidisciplinary institutions," Journal of Informetrics, Elsevier, vol. 12(3), pages 736-756.
    85. Rogge, Nicky, 2018. "Composite indicators as generalized benefit-of-the-doubt weighted averages," European Journal of Operational Research, Elsevier, vol. 267(1), pages 381-392.
    86. Lili Wang & Ad Notten & Alexandru Surpatean, 2013. "Interdisciplinarity of nano research fields: a keyword mining approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 877-892, March.
    87. Nightingale, Paul, 1998. "A cognitive model of innovation," Research Policy, Elsevier, vol. 27(7), pages 689-709, November.
    88. Luis Sanz-Menéndez & María Bordons & M Angeles Zulueta, 2001. "Interdisciplinarity as a multidimensional concept: its measure in three different research areas," Research Evaluation, Oxford University Press, vol. 10(1), pages 47-58, April.
    89. Marco Seeber & Jef Vlegels & Mattia Cattaneo, 2022. "Conditions that do or do not disadvantage interdisciplinary research proposals in project evaluation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(8), pages 1106-1126, August.
    90. Wolfgang Glänzel & Balázs Schlemmer & Bart Thijs, 2003. "Better late than never? On the chance to become highly cited only beyond the standard bibliometric time horizon," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 571-586, November.
    91. Lin Zhang & Beibei Sun & Lidan Jiang & Ying Huang, 2021. "On the relationship between interdisciplinarity and impact: Distinct effects on academic and broader impact [A Comparison of Two Approaches for Measuring Interdisciplinary Research Output: The Disc," Research Evaluation, Oxford University Press, vol. 30(3), pages 256-268.
    92. Frédérique Bone & Michael M Hopkins & Ismael Ràfols & Jordi Molas-Gallart & Puay Tang & Gail Davey & Antony M Carr, 2020. "DARE to be different? A novel approach for analysing diversity in collaborative research projects," Research Evaluation, Oxford University Press, vol. 29(3), pages 300-315.
    93. Salvatore Greco & Alessio Ishizaka & Menelaos Tasiou & Gianpiero Torrisi, 2019. "On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 61-94, January.
    94. Alfredo Yegros-Yegros & Ismael Rafols & Pablo D’Este, 2015. "Does Interdisciplinary Research Lead to Higher Citation Impact? The Different Effect of Proximal and Distal Interdisciplinarity," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    95. Jacqueline N. Lane & Misha Teplitskiy & Gary Gray & Hardeep Ranu & Michael Menietti & Eva C. Guinan & Karim R. Lakhani, 2022. "Conservatism Gets Funded? A Field Experiment on the Role of Negative Information in Novel Project Evaluation," Management Science, INFORMS, vol. 68(6), pages 4478-4495, June.
    96. Dongqing Lyu & Xuanmin Ruan & Juan Xie & Ying Cheng, 2021. "The classification of citing motivations: a meta-synthesis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3243-3264, April.
    97. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    98. Kevin Shear McCann, 2000. "The diversity–stability debate," Nature, Nature, vol. 405(6783), pages 228-233, May.
    99. Hou, Jianhua & Li, Hao & Zhang, Yang, 2024. "Influence of interdisciplinarity of scientific papers on the durability of citation diffusion: A perspective from citation discontinuance," Journal of Informetrics, Elsevier, vol. 18(3).
    100. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    101. Leydesdorff, Loet & Wagner, Caroline S. & Bornmann, Lutz, 2019. "Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient," Journal of Informetrics, Elsevier, vol. 13(1), pages 255-269.
    102. Alan L. Porter & Ismael Rafols, 2009. "Is science becoming more interdisciplinary? Measuring and mapping six research fields over time," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 719-745, December.
    103. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    104. Loet Leydesdorff, 2007. "Betweenness centrality as an indicator of the interdisciplinarity of scientific journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(9), pages 1303-1319, July.
    105. Monya Baker, 2016. "1,500 scientists lift the lid on reproducibility," Nature, Nature, vol. 533(7604), pages 452-454, May.
    106. Alan L Porter & David J Roessner & Anne E Heberger, 2008. "How interdisciplinary is a given body of research?," Research Evaluation, Oxford University Press, vol. 17(4), pages 273-282, December.
    107. Bourke, Paul & Butler, Linda, 1998. "Institutions and the map of science: matching university departments and fields of research," Research Policy, Elsevier, vol. 26(6), pages 711-718, February.
    108. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    2. Andrea Bonaccorsi & Nicola Melluso & Francesco Alessandro Massucci, 2022. "Exploring the antecedents of interdisciplinarity at the European Research Council: a topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6961-6991, December.
    3. Shiji Chen & Yanhui Song & Fei Shu & Vincent Larivière, 2022. "Interdisciplinarity and impact: the effects of the citation time window," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2621-2642, May.
    4. Hou, Jianhua & Li, Hao & Zhang, Yang, 2024. "Influence of interdisciplinarity of scientific papers on the durability of citation diffusion: A perspective from citation discontinuance," Journal of Informetrics, Elsevier, vol. 18(3).
    5. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.
    6. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.
    7. Xin Liu & Yi Bu & Ming Li & Jiang Li, 2024. "Monodisciplinary collaboration disrupts science more than multidisciplinary collaboration," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 75(1), pages 59-78, January.
    8. Lin Zhang & Beibei Sun & Zaida Chinchilla-Rodríguez & Lixin Chen & Ying Huang, 2018. "Interdisciplinarity and collaboration: on the relationship between disciplinary diversity in departmental affiliations and reference lists," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 271-291, October.
    9. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Zhang, Lin, 2018. "A comparison of two approaches for measuring interdisciplinary research output: The disciplinary diversity of authors vs the disciplinary diversity of the reference list," Journal of Informetrics, Elsevier, vol. 12(4), pages 1182-1193.
    10. Shiji Chen & Kaiqi Zhang & Junping Qiu & Jiaqi Chai, 2024. "Interdisciplinarity and expert rating: an analysis based on faculty opinions," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 6597-6628, November.
    11. Chen, Shiji & Qiu, Junping & Arsenault, Clément & Larivière, Vincent, 2021. "Exploring the interdisciplinarity patterns of highly cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
    12. Francesco Giovanni Avallone & Alberto Quagli & Paola Ramassa, 2022. "Interdisciplinary research by accounting scholars: An exploratory study," FINANCIAL REPORTING, FrancoAngeli Editore, vol. 2022(2), pages 5-34.
    13. Junping Qiu & Yunlong Yu & Shiji Chen & Teng Zhao & Shanshan Wang, 2024. "Effect of Scientific Collaboration on Interdisciplinarity in Climate Change From a Scientometric Perspective," SAGE Open, , vol. 14(2), pages 21582440241, April.
    14. Qing Ke, 2023. "Interdisciplinary research and technological impact: evidence from biomedicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2035-2077, April.
    15. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    16. Hongyu Zhou & Raf Guns & Tim C. E. Engels, 2022. "Are social sciences becoming more interdisciplinary? Evidence from publications 1960–2014," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(9), pages 1201-1221, September.
    17. Seolmin Yang & So Young Kim, 2023. "Knowledge-integrated research is more disruptive when supported by homogeneous funding sources: a case of US federally funded research in biomedical and life sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3257-3282, June.
    18. Leydesdorff, Loet & Wagner, Caroline S. & Bornmann, Lutz, 2019. "Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient," Journal of Informetrics, Elsevier, vol. 13(1), pages 255-269.
    19. Lina Xu & Steven Dellaportas & Jin Wang, 2022. "A study of interdisciplinary accounting research: analysing the diversity of cited references," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(2), pages 2131-2162, June.
    20. Sander Zwanenburg & Maryam Nakhoda & Peter Whigham, 2022. "Toward greater consistency and validity in measuring interdisciplinarity: a systematic and conceptual evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7769-7788, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:8:d:10.1007_s11192-024-05085-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.