IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v16y2022i2s1751157722000074.html
   My bibliography  Save this article

Developing a topic-driven method for interdisciplinarity analysis

Author

Listed:
  • Kim, Hyeyoung
  • Park, Hyelin
  • Song, Min

Abstract

This study explores the topic-based interdisciplinarity in the research domain of literacy. A text corpus of keywords was generated through a deep keyword generation model from abstracts of 346,387 articles published in 296 disciplines from 1917 to 2021. Dirichlet-Multinomial Regression topic modeling, interdisciplinarity indices, and network analysis were employed to analyze the collected corpus. Topic modeling uncovered 15 dominant research topics in the literacy field, as well as their up-and-down trends from 2000 to 2021. For each topic, keywords were then replaced with disciplines, and interdisciplinarity was measured using four indices: variety, balance, disparity, and diversity. Finally, the interdisciplinarity of each topic, connectivity between topics, and topic trends were comprehensively analyzed on the keyword co-occurrence network. Our methodology reaches beyond connectivity limited to a few disciplines and provides insight into the direction of collaboration between disciplines centered on a research domain. Moreover, the study's deep keyword generation model has methodological implications for forming a corpus spanning numerous disciplines as a bottom-up approach.

Suggested Citation

  • Kim, Hyeyoung & Park, Hyelin & Song, Min, 2022. "Developing a topic-driven method for interdisciplinarity analysis," Journal of Informetrics, Elsevier, vol. 16(2).
  • Handle: RePEc:eee:infome:v:16:y:2022:i:2:s1751157722000074
    DOI: 10.1016/j.joi.2022.101255
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157722000074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2022.101255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loet Leydesdorff & Caroline S. Wagner & Lutz Bornmann, 2018. "Betweenness and diversity in journal citation networks as measures of interdisciplinarity—A tribute to Eugene Garfield," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 567-592, February.
    2. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    3. Lin Zhang & Frizo Janssens & Liming Liang & Wolfgang Glänzel, 2010. "Journal cross-citation analysis for validation and improvement of journal-based subject classification in bibliometric research," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 687-706, March.
    4. Qiuju Zhou & Ronald Rousseau & Liying Yang & Ting Yue & Guoliang Yang, 2012. "A general framework for describing diversity within systems and similarity between systems with applications in informetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 787-812, December.
    5. Lin Zhang & Ronald Rousseau & Wolfgang Glänzel, 2016. "Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(5), pages 1257-1265, May.
    6. Arho Suominen & Hannes Toivanen, 2016. "Map of science with topic modeling: Comparison of unsupervised learning and human-assigned subject classification," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(10), pages 2464-2476, October.
    7. Loet Leydesdorff & Robert L. Goldstone, 2014. "Interdisciplinarity at the journal and specialty level: The changing knowledge bases of the journal cognitive science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(1), pages 164-177, January.
    8. Patricia Boechler & Karon Dragon & Ewa Wasniewski, 2014. "Digital Literacy Concepts and Definitions: Implications for Educational Assessment and Practice," International Journal of Digital Literacy and Digital Competence (IJDLDC), IGI Global, vol. 5(4), pages 1-18, October.
    9. Haiyun Xu & Ting Guo & Zenghui Yue & Lijie Ru & Shu Fang, 2016. "Interdisciplinary topics of information science: a study based on the terms interdisciplinarity index series," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 583-601, February.
    10. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    11. Ronald Rousseau, 2018. "The repeat rate: from Hirschman to Stirling," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 645-653, July.
    12. Leydesdorff, Loet & Wagner, Caroline S. & Bornmann, Lutz, 2019. "Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient," Journal of Informetrics, Elsevier, vol. 13(1), pages 255-269.
    13. Loet Leydesdorff, 2007. "Betweenness centrality as an indicator of the interdisciplinarity of scientific journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(9), pages 1303-1319, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
    2. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    3. Loet Leydesdorff & Inga Ivanova, 2021. "The measurement of “interdisciplinarity” and “synergy” in scientific and extra‐scientific collaborations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(4), pages 387-402, April.
    4. Shiji Chen & Yanhui Song & Fei Shu & Vincent Larivière, 2022. "Interdisciplinarity and impact: the effects of the citation time window," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2621-2642, May.
    5. Yi Bu & Mengyang Li & Weiye Gu & Win‐bin Huang, 2021. "Topic diversity: A discipline scheme‐free diversity measurement for journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(5), pages 523-539, May.
    6. Loet Leydesdorff, 2018. "Diversity and interdisciplinarity: how can one distinguish and recombine disparity, variety, and balance?," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 2113-2121, September.
    7. Wooseok Jang & Heeyeul Kwon & Yongtae Park & Hakyeon Lee, 2018. "Predicting the degree of interdisciplinarity in academic fields: the case of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 231-254, July.
    8. Xuefeng Wang & Zhinan Wang & Ying Huang & Yun Chen & Yi Zhang & Huichao Ren & Rongrong Li & Jinhui Pang, 2017. "Measuring interdisciplinarity of a research system: detecting distinction between publication categories and citation categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2023-2039, June.
    9. Shengli Deng & Sudi Xia, 2020. "Mapping the interdisciplinarity in information behavior research: a quantitative study using diversity measure and co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 489-513, July.
    10. Leydesdorff, Loet & Wagner, Caroline S. & Bornmann, Lutz, 2019. "Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient," Journal of Informetrics, Elsevier, vol. 13(1), pages 255-269.
    11. Ronald Rousseau, 2018. "The repeat rate: from Hirschman to Stirling," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 645-653, July.
    12. Manuel Goyanes & Márton Demeter & Aurea Grané & Irene Albarrán-Lozano & Homero Gil de Zúñiga, 2020. "A mathematical approach to assess research diversity: operationalization and applicability in communication sciences, political science, and beyond," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2299-2322, December.
    13. Gangan Prathap, 2019. "Balance: a thermodynamic perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 247-255, April.
    14. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.
    15. Lina Xu & Steven Dellaportas & Zhiqiang Yang & Jin Wang, 2023. "More on the relationship between interdisciplinary accounting research and citation impact," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(4), pages 4779-4803, December.
    16. Andrea Zielinski, 2022. "Impact of model settings on the text-based Rao diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7751-7768, December.
    17. Xiaojing Cai & Xiaozan Lyu & Ping Zhou, 2023. "The relationship between interdisciplinarity and citation impact—a novel perspective on citation accumulation," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    18. Hongyu Zhou & Raf Guns & Tim C. E. Engels, 2022. "Are social sciences becoming more interdisciplinary? Evidence from publications 1960–2014," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(9), pages 1201-1221, September.
    19. Chen, Shiji & Qiu, Junping & Arsenault, Clément & Larivière, Vincent, 2021. "Exploring the interdisciplinarity patterns of highly cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
    20. Keungoui Kim & Dieter F. Kogler & Sira Maliphol, 2024. "Identifying interdisciplinary emergence in the science of science: combination of network analysis and BERTopic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:16:y:2022:i:2:s1751157722000074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.