IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i3d10.1007_s11192-022-04275-z.html
   My bibliography  Save this article

Semantic-enhanced topic evolution analysis: a combination of the dynamic topic model and word2vec

Author

Listed:
  • Qiang Gao

    (Wuhan University)

  • Xiao Huang

    (Wuhan University)

  • Ke Dong

    (Wuhan University
    Wuhan University)

  • Zhentao Liang

    (Wuhan University)

  • Jiang Wu

    (Wuhan University
    Wuhan University)

Abstract

The combination of the topic model and the semantic method can help to discover the semantic distributions of topics and the changing characteristics of the semantic distributions, further providing a new perspective for the research of topic evolution. This study proposes a solution for quantifying the semantic distributions and the changing characteristics based on words in topic evolution through the Dynamic topic model (DTM) and the word2vec model. A dataset in the field of Library and information science (LIS) is utilized in the empirical study, and the topic-semantic probability distribution is derived. The evolving dynamics of the topics are constructed. The characteristics of evolving dynamics are used to explain the semantic distributions of topics in topic evolution. Then, the regularities of evolving dynamics are summarized to explain the changing characteristics of semantic distributions in topic evolution. Results show that no topic is distributed in a single semantic concept, and most topics correspond to various semantic concepts in LIS. The three kinds of topics in LIS are the convergent, diffusive, and stable topics. The discovery of different modes of topic evolution can further prove the development of the field. In addition, findings indicate that the popularity of topics and the characteristics of evolving dynamics of topics are irrelevant.

Suggested Citation

  • Qiang Gao & Xiao Huang & Ke Dong & Zhentao Liang & Jiang Wu, 2022. "Semantic-enhanced topic evolution analysis: a combination of the dynamic topic model and word2vec," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1543-1563, March.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:3:d:10.1007_s11192-022-04275-z
    DOI: 10.1007/s11192-022-04275-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-022-04275-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-022-04275-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinxuan Ma & Brady Lund, 2021. "The evolution and shift of research topics and methods in library and information science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(8), pages 1059-1074, August.
    2. Baitong Chen & Ying Ding & Feicheng Ma, 2018. "Semantic word shifts in a scientific domain," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 211-226, October.
    3. Zhong-Yi Wang & Gang Li & Chun-Ya Li & Ang Li, 2012. "Research on the semantic-based co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 855-875, March.
    4. Liu, Xiang & Jiang, Tingting & Ma, Feicheng, 2013. "Collective dynamics in knowledge networks: Emerging trends analysis," Journal of Informetrics, Elsevier, vol. 7(2), pages 425-438.
    5. Jinzhu Zhang & Wenqian Yu, 2020. "Early detection of technology opportunity based on analogy design and phrase semantic representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 551-576, October.
    6. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    7. Wanying Ding & Chaomei Chen, 2014. "Dynamic topic detection and tracking: A comparison of HDP, C-word, and cocitation methods," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(10), pages 2084-2097, October.
    8. Li, Daifeng & Ding, Ying & Shuai, Xin & Bollen, Johan & Tang, Jie & Chen, Shanshan & Zhu, Jiayi & Rocha, Guilherme, 2012. "Adding community and dynamic to topic models," Journal of Informetrics, Elsevier, vol. 6(2), pages 237-253.
    9. Qikai Cheng & Jiamin Wang & Wei Lu & Yong Huang & Yi Bu, 2020. "Keyword-citation-keyword network: a new perspective of discipline knowledge structure analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1923-1943, September.
    10. Qian, Yue & Liu, Yu & Sheng, Quan Z., 2020. "Understanding hierarchical structural evolution in a scientific discipline: A case study of artificial intelligence," Journal of Informetrics, Elsevier, vol. 14(3).
    11. Min Song & Go Eun Heo & Su Yeon Kim, 2014. "Analyzing topic evolution in bioinformatics: investigation of dynamics of the field with conference data in DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 397-428, October.
    12. Ciprian-Octavian Truică & Elena-Simona Apostol & Maria-Luiza Șerban & Adrian Paschke, 2021. "Topic-Based Document-Level Sentiment Analysis Using Contextual Cues," Mathematics, MDPI, vol. 9(21), pages 1-23, October.
    13. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    14. Chen, Baitong & Tsutsui, Satoshi & Ding, Ying & Ma, Feicheng, 2017. "Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 11(4), pages 1175-1189.
    15. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
    16. Jeong, Do-Heon & Song, Min, 2014. "Time gap analysis by the topic model-based temporal technique," Journal of Informetrics, Elsevier, vol. 8(3), pages 776-790.
    17. Cobo, M.J. & López-Herrera, A.G. & Herrera-Viedma, E. & Herrera, F., 2011. "An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field," Journal of Informetrics, Elsevier, vol. 5(1), pages 146-166.
    18. Yi Zhang & Guangquan Zhang & Donghua Zhu & Jie Lu, 2017. "Scientific evolutionary pathways: Identifying and visualizing relationships for scientific topics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(8), pages 1925-1939, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Man & Yang, Siluo & Gao, Qiang, 2024. "Multidimensional indicators to identify emerging technologies: Perspective of technological knowledge flow," Journal of Informetrics, Elsevier, vol. 18(1).
    2. Wuyue An & Lin Wang & Dongfeng Zhang, 2023. "Comprehensive commodity price forecasting framework using text mining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1865-1888, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    2. Qian, Yue & Liu, Yu & Sheng, Quan Z., 2020. "Understanding hierarchical structural evolution in a scientific discipline: A case study of artificial intelligence," Journal of Informetrics, Elsevier, vol. 14(3).
    3. Wang, Xiaoguang & He, Jing & Huang, Han & Wang, Hongyu, 2022. "MatrixSim: A new method for detecting the evolution paths of research topics," Journal of Informetrics, Elsevier, vol. 16(4).
    4. Abhijit Thakuria & Dipen Deka, 2024. "A decadal study on identifying latent topics and research trends in open access LIS journals using topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3841-3869, July.
    5. Shome, Samik & Hassan, M. Kabir & Verma, Sushma & Panigrahi, Tushar Ranjan, 2023. "Impact investment for sustainable development: A bibliometric analysis," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 770-800.
    6. Seyyed Reza Taher Harikandeh & Sadegh Aliakbary & Soroush Taheri, 2023. "An embedding approach for analyzing the evolution of research topics with a case study on computer science subdomains," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1567-1582, March.
    7. Li, Xin & Xie, Qianqian & Daim, Tugrul & Huang, Lucheng, 2019. "Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 432-449.
    8. Deming Lin & Tianhui Gong & Wenbin Liu & Martin Meyer, 2020. "An entropy-based measure for the evolution of h index research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2283-2298, December.
    9. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.
    10. Katchanov, Yurij L. & Markova, Yulia V., 2022. "Dynamics of senses of new physics discourse: Co-keywords analysis," Journal of Informetrics, Elsevier, vol. 16(1).
    11. Xiaoguang Wang & Hongyu Wang & Han Huang, 2021. "Evolutionary exploration and comparative analysis of the research topic networks in information disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4991-5017, June.
    12. A. Velez-Estevez & P. García-Sánchez & J. A. Moral-Munoz & M. J. Cobo, 2022. "Why do papers from international collaborations get more citations? A bibliometric analysis of Library and Information Science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7517-7555, December.
    13. Carlos Sánchez‐Camacho & Rocío Carranza & David Martín‐Consuegra & Estrella Díaz, 2022. "Evolution, trends and future research lines in corporate social responsibility and tourism: A bibliometric analysis and science mapping," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(3), pages 462-476, June.
    14. Ruturaj Baber & Yogesh Upadhyay & Prerana Baber & Rahul Pratap Singh Kaurav, 2023. "Three Decades of Consumer Ethnocentrism Research: A Bibliometric Analysis," Business Perspectives and Research, , vol. 11(1), pages 137-158, January.
    15. Mauricio Marrone, 2020. "Application of entity linking to identify research fronts and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 357-379, January.
    16. Margarida Rodrigues & Mário Franco, 2022. "Bibliometric review about eco-cites and urban sustainable development: trend topics," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13683-13704, December.
    17. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    18. Zhang, Tongyang & Sun, Ran & Fensel, Julia & Yu, Andrew & Bu, Yi & Xu, Jian, 2023. "Understanding the domain development through a word status observation model," Journal of Informetrics, Elsevier, vol. 17(2).
    19. Zhang, Yi & Wu, Mengjia & Miao, Wen & Huang, Lu & Lu, Jie, 2021. "Bi-layer network analytics: A methodology for characterizing emerging general-purpose technologies," Journal of Informetrics, Elsevier, vol. 15(4).
    20. Huichen Gao & Shijuan Wang, 2022. "The Intellectual Structure of Research on Rural-to-Urban Migrants: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(15), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:3:d:10.1007_s11192-022-04275-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.