IDEAS home Printed from https://ideas.repec.org/a/oup/scippl/v29y2002i3p189-200.html
   My bibliography  Save this article

Measuring national ‘emerging technology’ capabilities

Author

Listed:
  • Alan L Porter
  • J David Roessner
  • Xiao-Yin Jin
  • Nils C Newman

Abstract

How can national capabilities to develop emerging technologies be measured? We use INSPEC and EI Compendex class codes to examine 33 countries' research and development activity. We select candidate emerging technologies based on the Rand Corporation's categories. We screen these to tally those that show strong recent, and increasing, R&D publication rates. The resulting measures show strong convergence; indeed, their lack of divergence is unsettling. Our measures suggest that China now stands forth as an ‘emerging technology’ research power comparable to Germany, the UK, and France. A number of other nations evidence a striking lack of R&D activity, posing questions about their longer-range high-tech competitiveness. Copyright , Beech Tree Publishing.

Suggested Citation

  • Alan L Porter & J David Roessner & Xiao-Yin Jin & Nils C Newman, 2002. "Measuring national ‘emerging technology’ capabilities," Science and Public Policy, Oxford University Press, vol. 29(3), pages 189-200, June.
  • Handle: RePEc:oup:scippl:v:29:y:2002:i:3:p:189-200
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3152/147154302781781001
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Porter, Alan L. & Garner, Jon & Carley, Stephen F. & Newman, Nils C., 2019. "Emergence scoring to identify frontier R&D topics and key players," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 628-643.
    2. Konstantin Fursov & Alina Kadyrova, 2017. "How the analysis of transitionary references in knowledge networks and their centrality characteristics helps in understanding the genesis of growing technology areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1947-1963, June.
    3. Li, Munan & Porter, Alan L. & Suominen, Arho, 2018. "Insights into relationships between disruptive technology/innovation and emerging technology: A bibliometric perspective," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 285-296.
    4. Wang, Zhinan & Porter, Alan L. & Wang, Xuefeng & Carley, Stephen, 2019. "An approach to identify emergent topics of technological convergence: A case study for 3D printing," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 723-732.
    5. Richard B. Freeman, 2006. "Does Globalization of the Scientific/Engineering Workforce Threaten US Economic Leadership?," NBER Chapters, in: Innovation Policy and the Economy, Volume 6, pages 123-158, National Bureau of Economic Research, Inc.
    6. Samira Ranaei & Arho Suominen & Alan Porter & Stephen Carley, 2020. "Evaluating technological emergence using text analytics: two case technologies and three approaches," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 215-247, January.
    7. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    8. Moehrle, Martin G. & Caferoglu, Hüseyin, 2019. "Technological speciation as a source for emerging technologies. Using semantic patent analysis for the case of camera technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 776-784.
    9. Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
    10. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    11. Alfonso Ávila-Robinson & Kumiko Miyazaki, 2013. "Evolutionary paths of change of emerging nanotechnological innovation systems: the case of ZnO nanostructures," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 829-849, June.
    12. Petros Gkotsis & Antonio Vezzani, 2016. "Technological diffusion as a recombinant process," JRC Working Papers on Corporate R&D and Innovation 2016-07, Joint Research Centre.
    13. Joung, Junegak & Kim, Kwangsoo, 2017. "Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 281-292.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:scippl:v:29:y:2002:i:3:p:189-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/spp .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.