IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v101y2014i2d10.1007_s11192-014-1238-2.html
   My bibliography  Save this article

Open data and open code for big science of science studies

Author

Listed:
  • Robert P. Light

    (Indiana University)

  • David E. Polley

    (Indiana University)

  • Katy Börner

    (Indiana University)

Abstract

Historically, science of science (Sci2) studies have been performed by single investigators or small teams. As the size and complexity of data sets and analyses scales up, a “Big Science” approach (Price, Little science, big science, 1963) is required that exploits the expertise and resources of interdisciplinary teams spanning academic, government, and industry boundaries. Big Sci2 studies utilize “big data”, i.e., large, complex, diverse, longitudinal, and/or distributed datasets that might be owned by different stakeholders. They apply a systems science approach to uncover hidden patterns, bursts of activity, correlations, and laws. They make available open data and open code in support of replication of results, iterative refinement of approaches and tools, and education. This paper introduces a database-tool infrastructure that was designed to support big Sci2 studies. The open access Scholarly Database ( http://sdb.cns.iu.edu ) provides easy access to 26 million paper, patent, grant, and clinical trial records. The open source Sci2 tool ( http://sci2.cns.iu.edu ) supports temporal, geospatial, topical, and network studies. The scalability of the infrastructure is examined. Results show that temporal analyses scale linearly with the number of records and file size, while the geospatial algorithm showed quadratic growth. The number of edges rather than nodes determined performance for network based algorithms.

Suggested Citation

  • Robert P. Light & David E. Polley & Katy Börner, 2014. "Open data and open code for big science of science studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1535-1551, November.
  • Handle: RePEc:spr:scient:v:101:y:2014:i:2:d:10.1007_s11192-014-1238-2
    DOI: 10.1007/s11192-014-1238-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-014-1238-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-014-1238-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M.J. Cobo & A.G. López-Herrera & E. Herrera-Viedma & F. Herrera, 2011. "Science mapping software tools: Review, analysis, and cooperative study among tools," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(7), pages 1382-1402, July.
    2. Gavin LaRowe & Sumeet Ambre & John Burgoon & Weimao Ke & Katy Börner, 2009. "The Scholarly Database and its utility for scientometrics research," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(2), pages 219-234, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yuhao & Wang, Ruijie & Zeng, An & Zhang, Yi-Cheng, 2020. "Identifying prize-winning scientists by a competition-aware ranking," Journal of Informetrics, Elsevier, vol. 14(3).
    2. Juste Raimbault, 2019. "Exploration of an interdisciplinary scientific landscape," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 617-641, May.
    3. Yuyan Jiang & Xueli Liu, 2023. "A construction and empirical research of the journal disruption index based on open citation data," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(7), pages 3935-3958, July.
    4. Ryan P Womack, 2015. "Research Data in Core Journals in Biology, Chemistry, Mathematics, and Physics," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-22, December.
    5. Diana Maynard & Benedetto Lepori & Johann Petrak & Xingyi Song & Philippe Laredo, 2020. "Using ontologies to map between research data and policymakers’ presumptions: the experience of the KNOWMAK project," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1275-1290, November.
    6. Blanca De-Miguel-Molina & Scott W. Cunningham & Fernando Palop, 2017. "Analyzing Funding Patterns and Their Evolution in Two Medical Research Topics," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 14(02), pages 1-39, April.
    7. Pahrudin Pahrudin & Li-Wei Liu & Shao-Yu Li, 2022. "What Is the Role of Tourism Management and Marketing toward Sustainable Tourism? A Bibliometric Analysis Approach," Sustainability, MDPI, vol. 14(7), pages 1-18, April.
    8. Manh-Tung Ho & Peter Mantello & Hong-Kong T. Nguyen & Quan-Hoang Vuong, 2021. "Affective computing scholarship and the rise of China: a view from 25 years of bibliometric data," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-14, December.
    9. McLevey, John & McIlroy-Young, Reid, 2017. "Introducing metaknowledge: Software for computational research in information science, network analysis, and science of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 176-197.
    10. Leihan Zhang & Ke Xu & Jichang Zhao, 2017. "Sleeping beauties in meme diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 383-402, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
    2. Lin Zhu & Xiantao Liu & Sha He & Jun Shi & Ming Pang, 2015. "Keywords co-occurrence mapping knowledge domain research base on the theory of Big Data in oil and gas industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 249-260, October.
    3. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    4. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    5. Gallego-Losada, María-Jesús & Montero-Navarro, Antonio & García-Abajo, Elisa & Gallego-Losada, Rocío, 2023. "Digital financial inclusion. Visualizing the academic literature," Research in International Business and Finance, Elsevier, vol. 64(C).
    6. Loredana Canfora & Corrado Costa & Federico Pallottino & Stefano Mocali, 2021. "Trends in Soil Microbial Inoculants Research: A Science Mapping Approach to Unravel Strengths and Weaknesses of Their Application," Agriculture, MDPI, vol. 11(2), pages 1-21, February.
    7. Lanzalonga Federico & Chmet Federico & Petrolo Basilio & Brescia Valerio, 2023. "Exploring Diversity Management to Avoid Social Washing and Pinkwashing: Using Bibliometric Analysis to Shape Future Research Directions," Journal of Intercultural Management, Sciendo, vol. 15(1), pages 41-65, March.
    8. Santana, Monica & Cobo, Manuel J., 2020. "What is the future of work? A science mapping analysis," European Management Journal, Elsevier, vol. 38(6), pages 846-862.
    9. Saveria Olga Murielle Boulanger, 2022. "The Roadmap to Smart Cities: A Bibliometric Literature Review on Smart Cities’ Trends before and after the COVID-19 Pandemic," Energies, MDPI, vol. 15(24), pages 1-19, December.
    10. Ricardo Eito-Brun & María Ledesma Rodríguez, 2016. "50 years of space research in Europe: a bibliometric profile of the European Space Agency (ESA)," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 551-576, October.
    11. Rickly, Jillian M., 2022. "A review of authenticity research in tourism: Launching the Annals of Tourism Research Curated Collection on authenticity," Annals of Tourism Research, Elsevier, vol. 92(C).
    12. Sascha Kraus & Paul Jones & Norbert Kailer & Alexandra Weinmann & Nuria Chaparro-Banegas & Norat Roig-Tierno, 2021. "Digital Transformation: An Overview of the Current State of the Art of Research," SAGE Open, , vol. 11(3), pages 21582440211, September.
    13. Ali Najmi & Taha H. Rashidi & Alireza Abbasi & S. Travis Waller, 2017. "Reviewing the transport domain: an evolutionary bibliometrics and network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 843-865, February.
    14. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    15. Jerome K. Vanclay, 2012. "Impact factor: outdated artefact or stepping-stone to journal certification?," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(2), pages 211-238, August.
    16. Byoungsam Jin & Youngchul Bae, 2023. "Prospective Research Trend Analysis on Zero-Energy Building (ZEB): An Artificial Intelligence Approach," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    17. Hsia-Ching Chang, 2016. "The Synergy of Scientometric Analysis and Knowledge Mapping with Topic Models: Modelling the Development Trajectories of Information Security and Cyber-Security Research," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-33, December.
    18. Loet Leydesdorff & Han Woo Park & Balazs Lengyel, 2014. "A routine for measuring synergy in university–industry–government relations: mutual information as a Triple-Helix and Quadruple-Helix indicator," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 27-35, April.
    19. Rocco Mazza & Roberta Pace & Anna Paterno, 2023. "Themes and policies on population ageing: a bibliometric approach," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 77(2), pages 33-43, April-Jun.
    20. Chen, Xiaoyan & Liu, Yisheng, 2020. "Visualization analysis of high-speed railway research based on CiteSpace," Transport Policy, Elsevier, vol. 85(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:101:y:2014:i:2:d:10.1007_s11192-014-1238-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.