IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v83y2021i1d10.1007_s13571-019-00216-8.html
   My bibliography  Save this article

A Hierarchical Bayes Unit-Level Small Area Estimation Model for Normal Mixture Populations

Author

Listed:
  • Shuchi Goyal

    (University of California at Los Angeles)

  • Gauri Sankar Datta

    (University of Georgia)

  • Abhyuday Mandal

    (University of Georgia)

Abstract

National statistical agencies are regularly required to produce estimates about various subpopulations, formed by demographic and/or geographic classifications, based on a limited number of samples. Traditional direct estimates computed using only sampled data from individual subpopulations are usually unreliable due to small sample sizes. Subpopulations with small samples are termed small areas or small domains. To improve on the less reliable direct estimates, model-based estimates, which borrow information from suitable auxiliary variables, have been extensively proposed in the literature. However, standard model-based estimates rely on the normality assumptions of the error terms. In this research we propose a hierarchical Bayesian (HB) method for the unit-level nested error regression model based on a normal mixture for the unit-level error distribution. Our method proposed here is applicable to model cases with unit-level error outliers as well as cases where each small area population is comprised of two subgroups, neither of which can be treated as an outlier. Our proposed method is more robust than the normality based standard HB method (Datta and Ghosh, Annals Stat. 19, 1748–1770, 1991) to handle outliers or multiple subgroups in the population. Our proposal assumes two subgroups and the two-component mixture model that has been recently proposed by Chakraborty et al. (Int. Stat. Rev. 87, 158–176, 2019) to address outliers. To implement our proposal we use a uniform prior for the regression parameters, random effects variance parameter, and the mixing proportion, and we use a partially proper non-informative prior distribution for the two unit-level error variance components in the mixture. We apply our method to two examples to predict summary characteristics of farm products at the small area level. One of the examples is prediction of twelve county-level crop areas cultivated for corn in some Iowa counties. The other example involves total cash associated in farm operations in twenty-seven farming regions in Australia. We compare predictions of small area characteristics based on the proposed method with those obtained by applying the Datta and Ghosh (Annals Stat. 19, 1748–1770, 1991) and the Chakraborty et al. (Int. Stat. Rev. 87, 158–176, 2019) HB methods. Our simulation study comparing these three Bayesian methods, when the unit-level error distribution is normal, or t, or two-component normal mixture, showed the superiority of our proposed method, measured by prediction mean squared error, coverage probabilities and lengths of credible intervals for the small area means.

Suggested Citation

  • Shuchi Goyal & Gauri Sankar Datta & Abhyuday Mandal, 2021. "A Hierarchical Bayes Unit-Level Small Area Estimation Model for Normal Mixture Populations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 215-241, May.
  • Handle: RePEc:spr:sankhb:v:83:y:2021:i:1:d:10.1007_s13571-019-00216-8
    DOI: 10.1007/s13571-019-00216-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-019-00216-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-019-00216-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ray Chambers & Hukum Chandra & Nicola Salvati & Nikos Tzavidis, 2014. "Outlier robust small area estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 47-69, January.
    2. Adrijo Chakraborty & Gauri Sankar Datta & Abhyuday Mandal, 2019. "Robust Hierarchical Bayes Small Area Estimation for the Nested Error Linear Regression Model," International Statistical Review, International Statistical Institute, vol. 87(S1), pages 158-176, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linda J. Young & Lu Chen, 2022. "Using Small Area Estimation to Produce Official Statistics," Stats, MDPI, vol. 5(3), pages 1-17, September.
    2. Lu Chen & Nathan B. Cruze & Linda J. Young, 2022. "Model-Based Estimates for Farm Labor Quantities," Stats, MDPI, vol. 5(3), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    2. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    3. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    4. G. Bertarelli & R. Chambers & N. Salvati, 2021. "Outlier robust small domain estimation via bias correction and robust bootstrapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 331-357, March.
    5. Valéry Dongmo Jiongo & Pierre Nguimkeu, 2018. "Bootstrapping Mean Squared Errors of Robust Small-Area Estimators: Application to the Method-of-Payments Data," Staff Working Papers 18-28, Bank of Canada.
    6. Domingo Morales & María del Mar Rueda & Dolores Esteban, 2018. "Model-Assisted Estimation of Small Area Poverty Measures: An Application within the Valencia Region in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(3), pages 873-900, August.
    7. Fabrizi, Enrico & Salvati, Nicola & Trivisano, Carlo, 2020. "Robust Bayesian small area estimation based on quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    8. Stefano Marchetti & Maciej Beręsewicz & Nicola Salvati & Marcin Szymkowiak & Łukasz Wawrowski, 2018. "The use of a three‐level M‐quantile model to map poverty at local administrative unit 1 in Poland," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1077-1104, October.
    9. Bhuiyan, M. Kamruj Jaman & Hossain, M. Jamal & Islam, Mohammad Amirul & Imam, M. Farouq & Quddus, Md. Abdul, 2020. "Small Area Estimation Of Nutritional Status Of Under-Five Children In Sylhet Division: An M-Quantile Approach," Bangladesh Journal of Agricultural Economics, Bangladesh Agricultural University, vol. 41(1), July.
    10. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    11. Baldermann, Claudia & Salvati, Nicola & Schmid, Timo, 2016. "Robust small area estimation under spatial non-stationarity," Discussion Papers 2016/5, Free University Berlin, School of Business & Economics.
    12. Elżbieta Gołata, 2015. "Sae Education Challenges To Academics And Nsi," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 611-630, December.
    13. Forough Karlberg, 2015. "Small Area Estimation For Skewed Data In The Presence Of Zeroes," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 541-562, December.
    14. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2015. "Parametric transformed Fay–Herriot model for small area estimation," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 295-311.
    15. Linda J. Young & Lu Chen, 2022. "Using Small Area Estimation to Produce Official Statistics," Stats, MDPI, vol. 5(3), pages 1-17, September.
    16. Fernando A. S. Moura & André Felipe Neves & Denise Britz do N. Silva, 2017. "Small area models for skewed Brazilian business survey data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1039-1055, October.
    17. Chakraborty Adrijo & Datta Gauri Sankar & Mandal Abhyuday, 2016. "A Two-Component Normal Mixture Alternative to the Fay-Herriot Model," Statistics in Transition New Series, Statistics Poland, vol. 17(1), pages 67-90, March.
    18. N. Salvati & E. Fabrizi & M. G. Ranalli & R. L. Chambers, 2021. "Small area estimation with linked data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 78-107, February.
    19. Dehnel Grażyna & Wawrowski Łukasz, 2020. "Robust estimation of wages in small enterprises: the application to Poland’s districts," Statistics in Transition New Series, Statistics Poland, vol. 21(1), pages 137-157, March.
    20. Paul A. Smith & Chiara Bocci & Nikos Tzavidis & Sabine Krieg & Marc J. E. Smeets, 2021. "Robust estimation for small domains in business surveys," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 312-334, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:83:y:2021:i:1:d:10.1007_s13571-019-00216-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.