IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v30y2021i1d10.1007_s10260-020-00514-w.html
   My bibliography  Save this article

Outlier robust small domain estimation via bias correction and robust bootstrapping

Author

Listed:
  • G. Bertarelli

    (University of Pisa)

  • R. Chambers

    (University of Wollongong)

  • N. Salvati

    (University of Pisa)

Abstract

Several methods have been devised to mitigate the effects of outlier values on survey estimates. If outliers are a concern for estimation of population quantities, it is even more necessary to pay attention to them in a small area estimation (SAE) context, where sample size is usually very small and the estimation in often model based. In this paper we set two goals: The first is to review recent developments in outlier robust SAE. In particular, we focus on the use of partial bias corrections when outlier robust fitted values under a working model generate biased predictions from sample data containing representative outliers. Then we propose an outlier robust bootstrap MSE estimator for M-quantile based small area predictors which considers a bounded-block-bootstrap approach. We illustrate these methods through model based and design based simulations and in the context of a particular survey data set that has many of the outlier characteristics that are observed in business surveys.

Suggested Citation

  • G. Bertarelli & R. Chambers & N. Salvati, 2021. "Outlier robust small domain estimation via bias correction and robust bootstrapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 331-357, March.
  • Handle: RePEc:spr:stmapp:v:30:y:2021:i:1:d:10.1007_s10260-020-00514-w
    DOI: 10.1007/s10260-020-00514-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-020-00514-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-020-00514-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. V. Dongmo Jiongo & D. Haziza & P. Duchesne, 2013. "Controlling the bias of robust small-area estimators," Biometrika, Biometrika Trust, vol. 100(4), pages 843-858.
    4. Gonzalez-Manteiga, W. & Lombardia, M.J. & Molina, I. & Morales, D. & Santamaria, L., 2007. "Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2720-2733, February.
    5. Peter Hall & Tapabrata Maiti, 2006. "On parametric bootstrap methods for small area prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 221-238, April.
    6. Elvis Oltean, 2016. "Modelling income, wealth, and expenditure data by use of Econophysics," Papers 1603.08383, arXiv.org.
    7. A. H. Welsh & Elvezio Ronchetti, 1998. "Bias‐calibrated estimation from sample surveys containing outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 413-428.
    8. Ray Chambers & Nikos Tzavidis, 2006. "M-quantile models for small area estimation," Biometrika, Biometrika Trust, vol. 93(2), pages 255-268, June.
    9. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    10. Ray Chambers & Hukum Chandra & Nicola Salvati & Nikos Tzavidis, 2014. "Outlier robust small area estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 47-69, January.
    11. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmid, Timo & Tzavidis, Nikos & Münnich, Ralf & Chambers, Ray, 2015. "Outlier robust small area estimation under spatial correlation," Discussion Papers 2015/8, Free University Berlin, School of Business & Economics.
    2. Timo Schmid & Nikos Tzavidis & Ralf Münnich & Ray Chambers, 2016. "Outlier Robust Small-Area Estimation Under Spatial Correlation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 806-826, September.
    3. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    4. Giulia Romano & Nicola Salvati & Andrea Guerrini, 2014. "Factors Affecting Water Utility Companies’ Decision to Promote the Reduction of Household Water Consumption," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5491-5505, December.
    5. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    6. Baldermann, Claudia & Salvati, Nicola & Schmid, Timo, 2016. "Robust small area estimation under spatial non-stationarity," Discussion Papers 2016/5, Free University Berlin, School of Business & Economics.
    7. Stefano Marchetti & Caterina Giusti & Nicola Salvati & Monica Pratesi, 2017. "Small area estimation based on M-quantile models in presence of outliers in auxiliary variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 531-555, November.
    8. Ralf Münnich & Jan Burgard & Martin Vogt, 2013. "Small Area-Statistik: Methoden und Anwendungen," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 6(3), pages 149-191, March.
    9. Paolo Frumento & Nicola Salvati, 2020. "Parametric modelling of M‐quantile regression coefficient functions with application to small area estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 229-250, January.
    10. Marchetti, Stefano & Tzavidis, Nikos & Pratesi, Monica, 2012. "Non-parametric bootstrap mean squared error estimation for M-quantile estimators of small area averages, quantiles and poverty indicators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2889-2902.
    11. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    12. Valéry Dongmo Jiongo & Pierre Nguimkeu, 2018. "Bootstrapping Mean Squared Errors of Robust Small-Area Estimators: Application to the Method-of-Payments Data," Staff Working Papers 18-28, Bank of Canada.
    13. Paul A. Smith & Chiara Bocci & Nikos Tzavidis & Sabine Krieg & Marc J. E. Smeets, 2021. "Robust estimation for small domains in business surveys," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 312-334, March.
    14. Francesco Schirripa Spagnolo & Nicola Salvati & Antonella D’Agostino & Ides Nicaise, 2020. "The use of sampling weights in M‐quantile random‐effects regression: an application to Programme for International Student Assessment mathematics scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 991-1012, August.
    15. Timo Schmid & Ralf Münnich, 2014. "Spatial robust small area estimation," Statistical Papers, Springer, vol. 55(3), pages 653-670, August.
    16. Francesco Schirripa Spagnolo & Antonella D’Agostino & Nicola Salvati, 2018. "Measuring differences in economic standard of living between immigrant communities in Italy," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1643-1667, July.
    17. Bernardi, Mauro & Bignozzi, Valeria & Petrella, Lea, 2017. "On the Lp-quantiles for the Student t distribution," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 77-83.
    18. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    19. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    20. Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:30:y:2021:i:1:d:10.1007_s10260-020-00514-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.