IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v83y2021i1p78-107.html
   My bibliography  Save this article

Small area estimation with linked data

Author

Listed:
  • N. Salvati
  • E. Fabrizi
  • M. G. Ranalli
  • R. L. Chambers

Abstract

Data linkage can be used to combine values of the variable of interest from a national survey with values of auxiliary variables obtained from another source, such as a population register, for use in small area estimation. However, linkage errors can induce bias when fitting regression models; moreover, they can create non‐representative outliers in the linked data in addition to the presence of potential representative outliers. In this paper, we adopt a secondary analyst’s point of view, assuming that limited information is available on the linkage process, and develop small area estimators based on linear mixed models and M‐quantile models to accommodate linked data containing a mix of both types of outliers. We illustrate the properties of these small area estimators, as well as estimators of their mean squared error, by means of model‐based and design‐based simulation experiments. We further illustrate the proposed methodology by applying it to linked data from the European Survey on Income and Living Conditions and the Italian integrated archive of economic and demographic micro data in order to obtain estimates of the average equivalised income for labour market areas in central Italy.

Suggested Citation

  • N. Salvati & E. Fabrizi & M. G. Ranalli & R. L. Chambers, 2021. "Small area estimation with linked data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 78-107, February.
  • Handle: RePEc:bla:jorssb:v:83:y:2021:i:1:p:78-107
    DOI: 10.1111/rssb.12401
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12401
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Annamaria Bianchi & Enrico Fabrizi & Nicola Salvati & Nikos Tzavidis, 2018. "Estimation and Testing in M‐quantile Regression with Applications to Small Area Estimation," International Statistical Review, International Statistical Institute, vol. 86(3), pages 541-570, December.
    2. P. Lahiri & Michael D. Larsen, 2005. "Regression Analysis With Linked Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 222-230, March.
    3. Ray Chambers & Nikos Tzavidis, 2006. "M-quantile models for small area estimation," Biometrika, Biometrika Trust, vol. 93(2), pages 255-268, June.
    4. Ray Chambers & Hukum Chandra & Nicola Salvati & Nikos Tzavidis, 2014. "Outlier robust small area estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 47-69, January.
    5. Ray Chambers & Andrea Diniz da Silva, 2020. "Improved secondary analysis of linked data: a framework and an illustration," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 37-59, January.
    6. Kim, Gunky & Chambers, Raymond, 2012. "Regression analysis under incomplete linkage," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2756-2770.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    2. Fabrizi, Enrico & Salvati, Nicola & Trivisano, Carlo, 2020. "Robust Bayesian small area estimation based on quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    3. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    4. Paolo Frumento & Nicola Salvati, 2020. "Parametric modelling of M‐quantile regression coefficient functions with application to small area estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 229-250, January.
    5. Li‐Chun Zhang & Tiziana Tuoto, 2021. "Linkage‐data linear regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 522-547, April.
    6. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    7. G. Bertarelli & R. Chambers & N. Salvati, 2021. "Outlier robust small domain estimation via bias correction and robust bootstrapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 331-357, March.
    8. Valéry Dongmo Jiongo & Pierre Nguimkeu, 2018. "Bootstrapping Mean Squared Errors of Robust Small-Area Estimators: Application to the Method-of-Payments Data," Staff Working Papers 18-28, Bank of Canada.
    9. Stefano Marchetti & Maciej Beręsewicz & Nicola Salvati & Marcin Szymkowiak & Łukasz Wawrowski, 2018. "The use of a three‐level M‐quantile model to map poverty at local administrative unit 1 in Poland," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1077-1104, October.
    10. Ben Powell & Paul A. Smith, 2020. "Computing expectations and marginal likelihoods for permutations," Computational Statistics, Springer, vol. 35(2), pages 871-891, June.
    11. Han Ying, 2020. "Discussion of “Small area estimation: its evolution in five decades”, by Malay Ghosh," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 30-34, August.
    12. Tatiana Komarova & Denis Nekipelov & Evgeny Yakovlev, 2018. "Identification, data combination, and the risk of disclosure," Quantitative Economics, Econometric Society, vol. 9(1), pages 395-440, March.
    13. Bhuiyan, M. Kamruj Jaman & Hossain, M. Jamal & Islam, Mohammad Amirul & Imam, M. Farouq & Quddus, Md. Abdul, 2020. "Small Area Estimation Of Nutritional Status Of Under-Five Children In Sylhet Division: An M-Quantile Approach," Bangladesh Journal of Agricultural Economics, Bangladesh Agricultural University, vol. 41(1), July.
    14. Vo, Thanh Huan & Chauvet, Guillaume & Happe, André & Oger, Emmanuel & Paquelet, Stéphane & Garès, Valérie, 2023. "Extending the Fellegi-Sunter record linkage model for mixed-type data with application to the French national health data system," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    15. Ying Han, 2020. "Discussion of "Small area estimation: its evolution in five decades", by Malay Ghosh," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 30-34, August.
    16. Baldermann, Claudia & Salvati, Nicola & Schmid, Timo, 2016. "Robust small area estimation under spatial non-stationarity," Discussion Papers 2016/5, Free University Berlin, School of Business & Economics.
    17. Forough Karlberg, 2015. "Small Area Estimation For Skewed Data In The Presence Of Zeroes," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 541-562, December.
    18. Fernando A. S. Moura & André Felipe Neves & Denise Britz do N. Silva, 2017. "Small area models for skewed Brazilian business survey data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1039-1055, October.
    19. Dehnel Grażyna & Wawrowski Łukasz, 2020. "Robust estimation of wages in small enterprises: the application to Poland’s districts," Statistics in Transition New Series, Polish Statistical Association, vol. 21(1), pages 137-157, March.
    20. Paul A. Smith & Chiara Bocci & Nikos Tzavidis & Sabine Krieg & Marc J. E. Smeets, 2021. "Robust estimation for small domains in business surveys," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 312-334, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:83:y:2021:i:1:p:78-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.