IDEAS home Printed from https://ideas.repec.org/a/spr/soinre/v138y2018i3d10.1007_s11205-017-1678-1.html
   My bibliography  Save this article

Model-Assisted Estimation of Small Area Poverty Measures: An Application within the Valencia Region in Spain

Author

Listed:
  • Domingo Morales

    (Miguel Hernández University of Elche)

  • María del Mar Rueda

    (University of Granada)

  • Dolores Esteban

    (Miguel Hernández University of Elche)

Abstract

This paper introduces small area estimators of poverty indexes, with special attention to the poverty rate (or Head Count Index), and studies the sampling design consistency and the asymptotic normality of these estimators. The estimators are assisted by nested error regression models and are model-assisted counterparts of model-based empirical best predictors. Simulation studies show that these estimators present a good balance between sampling bias and mean squared error. Data from the 2013 Spanish living conditions survey with respect to the region of Valencia are used to determine the performance of this new method for estimating the poverty rate.

Suggested Citation

  • Domingo Morales & María del Mar Rueda & Dolores Esteban, 2018. "Model-Assisted Estimation of Small Area Poverty Measures: An Application within the Valencia Region in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(3), pages 873-900, August.
  • Handle: RePEc:spr:soinre:v:138:y:2018:i:3:d:10.1007_s11205-017-1678-1
    DOI: 10.1007/s11205-017-1678-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11205-017-1678-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11205-017-1678-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marchetti, Stefano & Tzavidis, Nikos & Pratesi, Monica, 2012. "Non-parametric bootstrap mean squared error estimation for M-quantile estimators of small area averages, quantiles and poverty indicators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2889-2902.
    2. J. Muñoz & E. Álvarez-Verdejo & R. García-Fernández & L. Barroso, 2015. "Efficient Estimation of the Headcount Index," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 123(3), pages 713-732, September.
    3. Jianqiang C. Wang & J. D. Opsomer, 2011. "On asymptotic normality and variance estimation for nondifferentiable survey estimators," Biometrika, Biometrika Trust, vol. 98(1), pages 91-106.
    4. Wu C. & Sitter R. R, 2001. "A Model-Calibration Approach to Using Complete Auxiliary Information From Survey Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 185-193, March.
    5. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    6. Marhuenda, Yolanda & Molina, Isabel & Morales, Domingo, 2013. "Small area estimation with spatio-temporal Fay–Herriot models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 308-325.
    7. Nikos Tzavidis & Nicola Salvati & Monica Pratesi & Ray Chambers, 2008. "M-quantile models with application to poverty mapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(3), pages 393-411, July.
    8. Marcelo Medeiros, 2006. "The Rich and the Poor: The Construction of an Affluence Line from the Poverty Line," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 78(1), pages 1-18, August.
    9. Montanari, Giorgio E. & Ranalli, M. Giovanna, 2005. "Nonparametric Model Calibration Estimation in Survey Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1429-1442, December.
    10. Miguel Boubeta & María José Lombardía & Domingo Morales, 2016. "Empirical best prediction under area-level Poisson mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 548-569, September.
    11. Boubeta, Miguel & Lombardía, María José & Morales, Domingo, 2017. "Poisson mixed models for studying the poverty in small areas," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 32-47.
    12. Ray Chambers & Hukum Chandra & Nicola Salvati & Nikos Tzavidis, 2014. "Outlier robust small area estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 47-69, January.
    13. María Mar Rueda & Juan Muñoz, 2011. "Estimation of poverty measures with auxiliary information in sample surveys," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(3), pages 687-700, April.
    14. Esther López-Vizcaíno & María José Lombardía & Domingo Morales, 2015. "Small area estimation of labour force indicators under a multinomial model with correlated time and area effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 535-565, June.
    15. Jekaterina Navicke & Olga Rastrigina & Holly Sutherland, 2014. "Nowcasting Indicators of Poverty Risk in the European Union: A Microsimulation Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 119(1), pages 101-119, October.
    16. Esteban, M.D. & Morales, D. & Pérez, A. & Santamaría, L., 2012. "Small area estimation of poverty proportions under area-level time models," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2840-2855.
    17. Eric Crettaz & Christian Suter, 2013. "The Impact of Adaptive Preferences on Subjective Indicators: An Analysis of Poverty Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 114(1), pages 139-152, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esteban Fernandez-Vazquez & Alberto Diaz Dapena & Fernando Rubiera-Morollon & Ana Viñuela, 2020. "Spatial Disaggregation of Social Indicators: An Info-Metrics Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(2), pages 809-821, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Benavent & Domingo Morales, 2021. "Small area estimation under a temporal bivariate area-level linear mixed model with independent time effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 195-222, March.
    2. María Bugallo & Domingo Morales & María Dolores Esteban & Maria Chiara Pagliarella, 2024. "Model-Based Estimation of Small Area Dissimilarity Indexes: An Application to Sex Occupational Segregation in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 174(2), pages 473-501, September.
    3. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2020. "Small area estimation of proportions under area-level compositional mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 793-818, September.
    4. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2023. "Small area estimation of average compositions under multivariate nested error regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 651-676, June.
    5. Stefano Marchetti & Maciej Beręsewicz & Nicola Salvati & Marcin Szymkowiak & Łukasz Wawrowski, 2018. "The use of a three‐level M‐quantile model to map poverty at local administrative unit 1 in Poland," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1077-1104, October.
    6. Boubeta, Miguel & Lombardía, María José & Morales, Domingo, 2017. "Poisson mixed models for studying the poverty in small areas," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 32-47.
    7. Tomáš Hobza & Domingo Morales & Laureano Santamaría, 2018. "Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 270-294, June.
    8. Chandra, Hukum & Salvati, Nicola & Chambers, Ray, 2018. "Small area estimation under a spatially non-linear model," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 19-38.
    9. J. Muñoz & E. Álvarez-Verdejo & R. García-Fernández & L. Barroso, 2015. "Efficient Estimation of the Headcount Index," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 123(3), pages 713-732, September.
    10. J. F. Muñoz & E. à lvarez-Verdejo & R. M. García-Fernández, 2018. "On Estimating the Poverty Gap and the Poverty Severity Indices With Auxiliary Information," Sociological Methods & Research, , vol. 47(3), pages 598-625, August.
    11. Guadarrama, María & Morales, Domingo & Molina, Isabel, 2021. "Time stable empirical best predictors under a unit-level model," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    12. Isabel Molina & Paul Corral & Minh Nguyen, 2022. "Estimation of poverty and inequality in small areas: review and discussion," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1143-1166, December.
    13. Jan Pablo Burgard & Joscha Krause & Domingo Morales, 2022. "A measurement error Rao–Yu model for regional prevalence estimation over time using uncertain data obtained from dependent survey estimates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 204-234, March.
    14. Miguel Boubeta & María José Lombardía & Domingo Morales, 2024. "Small area prediction of proportions and counts under a spatial Poisson mixed model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(4), pages 1193-1215, September.
    15. Jan Pablo Burgard & María Dolores Esteban & Domingo Morales & Agustín Pérez, 2020. "A Fay–Herriot model when auxiliary variables are measured with error," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 166-195, March.
    16. Domingo Morales & Joscha Krause & Jan Pablo Burgard, 2022. "On the Use of Aggregate Survey Data for Estimating Regional Major Depressive Disorder Prevalence," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 344-368, March.
    17. Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "$$\ell _2$$ ℓ 2 -penalized approximate likelihood inference in logit mixed models for regional prevalence estimation under covariate rank-deficiency," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 459-489, May.
    18. Yolanda Marhuenda & Isabel Molina & Domingo Morales & J. N. K. Rao, 2017. "Poverty mapping in small areas under a twofold nested error regression model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1111-1136, October.
    19. Jan Pablo Burgard & Domingo Morales & Anna-Lena Wölwer, 2022. "Small area estimation of socioeconomic indicators for sampled and unsampled domains," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 287-314, June.
    20. Miguel Boubeta & María José Lombardía & Domingo Morales, 2016. "Empirical best prediction under area-level Poisson mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 548-569, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:soinre:v:138:y:2018:i:3:d:10.1007_s11205-017-1678-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.