IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v80y2018i2d10.1007_s13571-018-0165-2.html
   My bibliography  Save this article

Data-Driven Bandwidth Selection for Recursive Kernel Density Estimators Under Double Truncation

Author

Listed:
  • Yousri Slaoui

    (Université de Poitiers)

Abstract

In this paper we proposed a data-driven bandwidth selection procedure of the recursive kernel density estimators under double truncation. We showed that, using the selected bandwidth and a special stepsize, the proposed recursive estimators outperform the nonrecursive one in terms of estimation error in many situations. We corroborated these theoretical results through simulation study. The proposed estimators are then applied to data on the luminosity of quasars in astronomy. We corroborated these theoretical results through simulation study, then, we applied the proposed estimators to data on the luminosity of quasars in astronomy.

Suggested Citation

  • Yousri Slaoui, 2018. "Data-Driven Bandwidth Selection for Recursive Kernel Density Estimators Under Double Truncation," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 341-368, November.
  • Handle: RePEc:spr:sankhb:v:80:y:2018:i:2:d:10.1007_s13571-018-0165-2
    DOI: 10.1007/s13571-018-0165-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-018-0165-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-018-0165-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pao-sheng Shen, 2010. "Nonparametric analysis of doubly truncated data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 835-853, October.
    2. Yousri Slaoui, 2015. "Plug-in bandwidth selector for recursive kernel regression estimators defined by stochastic approximation method," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 483-509, November.
    3. Moreira, Carla & de Uña-Álvarez, Jacobo & Crujeiras, Rosa M., 2010. "DTDA: An R Package to Analyze Randomly Truncated Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 37(i07).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye Tian & Yasunari Yokota, 2019. "Estimating the Major Cluster by Mean-Shift with Updating Kernel," Mathematics, MDPI, vol. 7(9), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreira, C. & de Uña-Álvarez, J. & Meira-Machado, L., 2016. "Nonparametric regression with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 294-307.
    2. Micha Mandel & Jacobo de Uña†à lvarez & David K. Simon & Rebecca A. Betensky, 2018. "Inverse probability weighted Cox regression for doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 481-487, June.
    3. Moreira, C. & Van Keilegom, I., 2013. "Bandwidth selection for kernel density estimation with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 107-123.
    4. Moreira, Carla & de Una-Alvarez, Jacobo & Van Keilegom, Ingrid, 2012. "Goodness-of-fit Tests for a Semiparametric Model under Random Double Truncation," LIDAM Discussion Papers ISBA 2012024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Moreira , Carla & Van Keilegom, Ingrid, 2012. "Bandwidth Selection for Kernel Density Estimation with Doubly Truncated Data," LIDAM Discussion Papers ISBA 2012006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    7. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    8. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    9. Lior Rennert & Sharon X. Xie, 2022. "Cox regression model under dependent truncation," Biometrics, The International Biometric Society, vol. 78(2), pages 460-473, June.
    10. Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
    11. Rafael Weißbach & Dominik Wied, 2022. "Truncating the exponential with a uniform distribution," Statistical Papers, Springer, vol. 63(4), pages 1247-1270, August.
    12. Slaoui Yousri & Khardani Salah, 2020. "Nonparametric relative recursive regression," Dependence Modeling, De Gruyter, vol. 8(1), pages 221-238, January.
    13. Achim Dörre & Chung-Yan Huang & Yi-Kuan Tseng & Takeshi Emura, 2021. "Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model," Computational Statistics, Springer, vol. 36(1), pages 375-408, March.
    14. Kavita Sardana, 2021. "Double truncation in choice-based sample: An application of on-site survey sample," Economics Bulletin, AccessEcon, vol. 41(2), pages 781-787.
    15. Pao-Sheng Shen, 2013. "A class of rank-based tests for doubly-truncated data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 83-102, March.
    16. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    17. Bouzebda, Salim & Slaoui, Yousri, 2022. "Nonparametric recursive method for moment generating function kernel-type estimators," Statistics & Probability Letters, Elsevier, vol. 184(C).
    18. Linh Hoang Khanh Dang & Carlo Giovanni Camarda & France Meslé & Nadine Ouellette & Jean-Marie Robine & Jacques Vallin, 2023. "The question of the human mortality plateau: Contrasting insights by longevity pioneers," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 48(11), pages 321-338.
    19. Slaoui Yousri & Khardani Salah, 2020. "Nonparametric relative recursive regression," Dependence Modeling, De Gruyter, vol. 8(1), pages 221-238, January.
    20. Carla Moreira & Jacobo de Uña-Álvarez & Roel Braekers, 2021. "Nonparametric estimation of a distribution function from doubly truncated data under dependence," Computational Statistics, Springer, vol. 36(3), pages 1693-1720, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:80:y:2018:i:2:d:10.1007_s13571-018-0165-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.