IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i2p460-473.html
   My bibliography  Save this article

Cox regression model under dependent truncation

Author

Listed:
  • Lior Rennert
  • Sharon X. Xie

Abstract

Truncation is a statistical phenomenon that occurs in many time‐to‐event studies. For example, autopsy‐confirmed studies of neurodegenerative diseases are subject to an inherent left and right truncation, also known as double truncation. When the goal is to study the effect of risk factors on survival, the standard Cox regression model cannot be used when the survival time is subject to truncation. Existing methods that adjust for both left and right truncation in the Cox regression model require independence between the survival times and truncation times, which may not be a reasonable assumption in practice. We propose an expectation‐maximization algorithm to relax the independence assumption in the Cox regression model under left, right, or double truncation to an assumption of conditional independence on the observed covariates. The resulting regression coefficient estimators are consistent and asymptotically normal. We demonstrate through extensive simulations that the proposed estimator has little bias and has a similar or lower mean‐squared error compared to existing estimators. We implement our approach to assess the effect of occupation on survival in subjects with autopsy‐confirmed Alzheimer's disease.

Suggested Citation

  • Lior Rennert & Sharon X. Xie, 2022. "Cox regression model under dependent truncation," Biometrics, The International Biometric Society, vol. 78(2), pages 460-473, June.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:460-473
    DOI: 10.1111/biom.13451
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13451
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13451?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Micha Mandel & Jacobo de Uña†à lvarez & David K. Simon & Rebecca A. Betensky, 2018. "Inverse probability weighted Cox regression for doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 481-487, June.
    2. Lajmi Lakhal Chaieb & Louis-Paul Rivest & Belkacem Abdous, 2006. "Estimating survival under a dependent truncation," Biometrika, Biometrika Trust, vol. 93(3), pages 655-669, September.
    3. Xiangfei Meng & Carl D’Arcy, 2012. "Education and Dementia in the Context of the Cognitive Reserve Hypothesis: A Systematic Review with Meta-Analyses and Qualitative Analyses," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-16, June.
    4. Emura, Takeshi & Wang, Weijing, 2012. "Nonparametric maximum likelihood estimation for dependent truncation data based on copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 171-188.
    5. Lior Rennert & Sharon X. Xie, 2018. "Cox regression model with doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 725-733, June.
    6. Martin, Emily C. & Betensky, Rebecca A., 2005. "Testing Quasi-Independence of Failure and Truncation Times via Conditional Kendall's Tau," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 484-492, June.
    7. T. Emura & K. Murotani, 2015. "An algorithm for estimating survival under a copula-based dependent truncation model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 734-751, December.
    8. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    9. Pao-sheng Shen, 2010. "Nonparametric analysis of doubly truncated data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 835-853, October.
    10. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    2. Carla Moreira & Jacobo de Uña-Álvarez & Roel Braekers, 2021. "Nonparametric estimation of a distribution function from doubly truncated data under dependence," Computational Statistics, Springer, vol. 36(3), pages 1693-1720, September.
    3. Takeshi Emura & Chi-Hung Pan, 2020. "Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach," Statistical Papers, Springer, vol. 61(1), pages 479-501, February.
    4. Jing Qian & Sy Han Chiou & Rebecca A. Betensky, 2022. "Transformation model based regression with dependently truncated and independently censored data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 395-416, March.
    5. Chiou, Sy Han & Qian, Jing & Mormino, Elizabeth & Betensky, Rebecca A., 2018. "Permutation tests for general dependent truncation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 308-324.
    6. Jing Qian & Rebecca A. Betensky, 2023. "Nonparametric bounds for the survivor function under general dependent truncation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 327-357, March.
    7. Bella Vakulenko‐Lagun & Jing Qian & Sy Han Chiou & Nancy Wang & Rebecca A. Betensky, 2022. "Nonparametric estimation of the survival distribution under covariate‐induced dependent truncation," Biometrics, The International Biometric Society, vol. 78(4), pages 1390-1401, December.
    8. T. Emura & K. Murotani, 2015. "An algorithm for estimating survival under a copula-based dependent truncation model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 734-751, December.
    9. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    10. Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    11. Moreira, C. & de Uña-Álvarez, J. & Meira-Machado, L., 2016. "Nonparametric regression with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 294-307.
    12. Bella Vakulenko‐Lagun & Micha Mandel & Rebecca A. Betensky, 2020. "Inverse probability weighting methods for Cox regression with right‐truncated data," Biometrics, The International Biometric Society, vol. 76(2), pages 484-495, June.
    13. Austin, Matthew D. & Betensky, Rebecca A., 2014. "Eliminating bias due to censoring in Kendall’s tau estimators for quasi-independence of truncation and failure," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 16-26.
    14. Emura, Takeshi & Hsu, Jiun-Huang, 2020. "Estimation of the Mann–Whitney effect in the two-sample problem under dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    15. Emura, Takeshi & Konno, Yoshihiko, 2012. "A goodness-of-fit test for parametric models based on dependently truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2237-2250.
    16. Ying Wu & Richard J. Cook, 2018. "Variable selection and prediction in biased samples with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 72-93, January.
    17. Rebecca A. Betensky & Jing Qian & Jingyao Hou, 2023. "Nonparametric and semiparametric estimation with sequentially truncated survival data," Biometrics, The International Biometric Society, vol. 79(2), pages 1000-1013, June.
    18. Emura, Takeshi & Wang, Weijing, 2010. "Testing quasi-independence for truncation data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 223-239, January.
    19. Ghosh Debashis, 2008. "On the Plackett Distribution with Bivariate Censored Data," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-24, May.
    20. Pao-Sheng Shen, 2011. "Testing quasi-independence for doubly truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 753-761.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:460-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.