IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v80y2018i2d10.1007_s13571-018-0160-7.html
   My bibliography  Save this article

Inferences in Binary Dynamic Fixed Models in a Semi-parametric Setup

Author

Listed:
  • Brajendra C. Sutradhar

    (Carleton University
    Memorial University)

  • Nan Zheng

    (Memorial University)

Abstract

In a longitudinal setup, the so-called generalized estimating equations approach was a popular inference technique to obtain efficient regression estimates until it was discovered that this approach may in fact yield less efficient estimates than an independence assumption-based estimating equation approach. In this paper, we revisit this inference issue in a semi-parametric longitudinal setup for binary data and find that the semi-parametric generalized estimating equations also encounter similar efficiency drawbacks when compared with independence assumption-based approach. This makes the generalized estimating equations approach unacceptable for correlated data analysis. We analyze the repeated binary data by fitting a semi-parametric binary dynamic model. The non-parametric function and the regression parameters involved in the semi-parametric regression function are estimated by using a semi-parametric generalized quasi-likelihood and a semi-parametric quasi-likelihood approach, respectively, whereas the dynamic dependence, that is, the correlation index parameter of the model is estimated by a semi-parametric method of moments. Asymptotic and finite sample properties of the estimators are discussed. The proposed model and the estimation methodology are also illustrated by reanalyzing the well-known respiratory disease data.

Suggested Citation

  • Brajendra C. Sutradhar & Nan Zheng, 2018. "Inferences in Binary Dynamic Fixed Models in a Semi-parametric Setup," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 263-291, November.
  • Handle: RePEc:spr:sankhb:v:80:y:2018:i:2:d:10.1007_s13571-018-0160-7
    DOI: 10.1007/s13571-018-0160-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-018-0160-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-018-0160-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin X. & Carroll R. J., 2001. "Semiparametric Regression for Clustered Data Using Generalized Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1045-1056, September.
    2. Ludwig Fahrmeir & Heinz Kaufmann, 1987. "Regression Models For Non‐Stationary Categorical Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(2), pages 147-160, March.
    3. Powell, James L. & Stoker, Thomas M., 1996. "Optimal bandwidth choice for density-weighted averages," Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
    4. Xihong Lin & Raymond J. Carroll, 2006. "Semiparametric estimation in general repeated measures problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 69-88, February.
    5. Vandna Jowaheer, 2002. "Analysing longitudinal count data with overdispersion," Biometrika, Biometrika Trust, vol. 89(2), pages 389-399, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brajendra C. Sutradhar, 2022. "Fixed versus Mixed Effects Based Marginal Models for Clustered Correlated Binary Data: an Overview on Advances and Challenges," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 259-302, May.
    2. Brajendra C. Sutradhar, 2022. "Multinomial Logistic Mixed Models for Clustered Categorical Data in a Complex Survey Sampling Setup," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 743-789, August.
    3. Alwell J. Oyet & Brajendra C. Sutradhar, 2021. "Analyzing Unevenly Spaced Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 342-373, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brajendra C. Sutradhar & Vandna Jowaheer & R. Prabhakar Rao, 2016. "Semi-Parametric Models for Negative Binomial Panel Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 269-303, August.
    2. Brajendra C. Sutradhar, 2018. "Semi-parametric Dynamic Models for Longitudinal Ordinal Categorical Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 80-109, February.
    3. Hamadi, Malika & Heinen, Andréas, 2015. "Firm performance when ownership is very concentrated: Evidence from a semiparametric panel," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 172-194.
    4. Shakhawat Hossain & Le An Lac, 2021. "Optimal shrinkage estimations in partially linear single-index models for binary longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 811-835, December.
    5. Li, Cong & Liang, Zhongwen, 2015. "Asymptotics for nonparametric and semiparametric fixed effects panel models," Journal of Econometrics, Elsevier, vol. 185(2), pages 420-434.
    6. Jia Chen & Degui Li & Hua Liang & Suojin Wang, 2014. "Semiparametric GEE Analysis in Partially Linear Single-Index Models for Longitudinal Data," Discussion Papers 14/26, Department of Economics, University of York.
    7. Nan Zheng & Brajendra C. Sutradhar, 2018. "Inferences in semi-parametric dynamic mixed models for longitudinal count data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 215-247, February.
    8. Chen, Ziqi & Shi, Ning-Zhong & Gao, Wei & Tang, Man-Lai, 2011. "Efficient semiparametric estimation via Cholesky decomposition for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3344-3354, December.
    9. Henderson, Daniel J. & Carroll, Raymond J. & Li, Qi, 2008. "Nonparametric estimation and testing of fixed effects panel data models," Journal of Econometrics, Elsevier, vol. 144(1), pages 257-275, May.
    10. Sneddon, Gary & Sutradhar, Brajendra C., 2004. "On semiparametric familial-longitudinal models," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 369-379, September.
    11. Ma, Shujie & Liang, Hua & Tsai, Chih-Ling, 2014. "Partially linear single index models for repeated measurements," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 354-375.
    12. Al Kadiri, M. & Carroll, R.J. & Wand, M.P., 2010. "Marginal longitudinal semiparametric regression via penalized splines," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1242-1252, August.
    13. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    14. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    15. SCHAFGANS, Marcia M.A. & ZINDE-WALSH, Victoria, 2007. "Robust Average Derivative Estimation," Cahiers de recherche 12-2007, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    16. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
    17. Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," SFB 649 Discussion Papers 2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Amos Golan & Enrico Moretti & Jeffrey M.Perloff, 2004. "A Small-Sample Estimator for the Sample-Selection Model," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 71-91.
    19. Bas Donkers & Marcia M Schafgans, 2005. "A method of moments estimator for semiparametric index models," STICERD - Econometrics Paper Series 493, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. Lian, Heng & Du, Pang & Li, YuanZhang & Liang, Hua, 2014. "Partially linear structure identification in generalized additive models with NP-dimensionality," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 197-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:80:y:2018:i:2:d:10.1007_s13571-018-0160-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.