IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v83y2021i2d10.1007_s13571-019-00200-2.html
   My bibliography  Save this article

Analyzing Unevenly Spaced Longitudinal Count Data

Author

Listed:
  • Alwell J. Oyet

    (Memorial University)

  • Brajendra C. Sutradhar

    (Memorial University
    Carleton University)

Abstract

In a longitudinal setup, as opposed to equi-spaced count responses, there are situations where an individual patient may provide successive count responses at unevenly spaced time intervals. These unevenly spaced count responses are in general accompanied with covariates information collected at the response occurring time points. Here, the responses and covariates are complete as opposed to certain longitudinal data subject to non-response or missing. The regression analysis of this type of unevenly spaced longitudinal count data is not adequately discussed in the literature. In this paper we propose a dynamic model for unevenly spaced longitudinal Poisson counts and demonstrate the computation of correlations among such count responses through an example with T = 4 time intervals such as 4 weeks as the duration of the longitudinal study. Here, if an individual patient reports a problem (in terms of counts) say at time intervals 1, 3, and 4 (i.e., in first, third and fourth weeks); then 3 count responses collected at these 3 times/weeks would be unevenly spaced. Clearly, this individual had nothing to report at time point 2, i.e., in second week, and hence these 3 responses are considered to be complete. Here, we emphasize that this ‘no response’ in the second week for the individual, is, neither a missing response (or so-called non-response) nor can it be quantified as a zero count because no probability can be assigned for a non-existing event. As far as the total number of time intervals is concerned it can be large but it is usually small in a longitudinal setup. However, for accuracy of correlations, one can make each interval small leading to a large value of T. For inferences, the regression parameters are estimated by using the well known GQL (generalized quasi-likelihood) approach. For the estimation of the unevenly spaced pair-wise correlation index parameters we use a standardized method of moments. The performance of the proposed estimation approaches are examined through an intensive simulation study. The results of this paper should be useful to bio-medical practitioners either currently dealing with this type of unevenly spaced count data or planning for data collection on a similar study.

Suggested Citation

  • Alwell J. Oyet & Brajendra C. Sutradhar, 2021. "Analyzing Unevenly Spaced Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 342-373, November.
  • Handle: RePEc:spr:sankhb:v:83:y:2021:i:2:d:10.1007_s13571-019-00200-2
    DOI: 10.1007/s13571-019-00200-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-019-00200-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-019-00200-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Freeland, R. K. & McCabe, B. P. M., 2004. "Forecasting discrete valued low count time series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 427-434.
    2. Rainer Winkelmann, 2008. "Econometric Analysis of Count Data," Springer Books, Springer, edition 0, number 978-3-540-78389-3, June.
    3. Brajendra C. Sutradhar, 2008. "On forecasting counts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 109-129.
    4. M. A. Al‐Osh & A. A. Alzaid, 1987. "First‐Order Integer‐Valued Autoregressive (Inar(1)) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 261-275, May.
    5. Vandna Jowaheer, 2002. "Analysing longitudinal count data with overdispersion," Biometrika, Biometrika Trust, vol. 89(2), pages 389-399, June.
    6. Brajendra C. Sutradhar & Nan Zheng, 2018. "Inferences in Binary Dynamic Fixed Models in a Semi-parametric Setup," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 263-291, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Jeßberger, 2011. "Multilateral Environmental Agreements up to 2050: Are They Sustainable Enough?," ifo Working Paper Series 98, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    2. Yuvraj Sunecher & Naushad Mamode Khan & Miroslav M. Ristić & Vandna Jowaheer, 2019. "BINAR(1) negative binomial model for bivariate non-stationary time series with different over-dispersion indices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 625-653, December.
    3. Simon Nik & Christian H. Weiß, 2020. "CLAR(1) point forecasting under estimation uncertainty," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 489-516, November.
    4. Brajendra C. Sutradhar, 2008. "On forecasting counts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 109-129.
    5. Dimitris Karlis & Naushad Mamode Khan & Yuvraj Sunecher, 2024. "The Negative Binomial INAR(1) Process under Different Thinning Processes: Can We Separate between the Different Models?," Stats, MDPI, vol. 7(3), pages 1-15, July.
    6. N. Mamode Khan & Y. Sunecher & V. Jowaheer & M. M. Ristic & M. Heenaye-Mamode Khan, 2019. "Investigating GQL-based inferential approaches for non-stationary BINAR(1) model under different quantum of over-dispersion with application," Computational Statistics, Springer, vol. 34(3), pages 1275-1313, September.
    7. Bono, Pierre-Henri & David, Quentin & Desbordes, Rodolphe & Py, Loriane, 2022. "Metro infrastructure and metropolitan attractiveness," Regional Science and Urban Economics, Elsevier, vol. 93(C).
    8. Kalle Hirvonen & John Hoddinott, 2017. "Agricultural production and children's diets: evidence from rural Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(4), pages 469-480, July.
    9. Noel Perceval Assogba & Daowei Zhang, 2020. "An Economic Analysis of Tropical Forest Resource Conservation in a Protected Area," Sustainability, MDPI, vol. 12(14), pages 1-12, July.
    10. Riccardo Crescenzi & Carlo Pietrobelli & Roberta Rabellotti, 2012. "Innovation Drivers, Value Chains and the Geography of Multinational Firms in European Regions," LEQS – LSE 'Europe in Question' Discussion Paper Series 53, European Institute, LSE.
    11. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    12. Carillo, Maria Rosaria & Papagni, Erasmo & Sapio, Alessandro, 2013. "Do collaborations enhance the high-quality output of scientific institutions? Evidence from the Italian Research Assessment Exercise," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 47(C), pages 25-36.
    13. Gamba, Simona & Magazzini, Laura & Pertile, Paolo, 2021. "R&D and market size: Who benefits from orphan drug legislation?," Journal of Health Economics, Elsevier, vol. 80(C).
    14. Zeng, Xiaoqiang & Kakizawa, Yoshihide, 2024. "Two-step conditional least squares estimation in ADCINAR(1) process, revisited," Statistics & Probability Letters, Elsevier, vol. 206(C).
    15. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    16. Paul Kwame Nkegbe & Naasegnibe Kuunibe & Samuel Sekyi, 2017. "Poverty and malaria morbidity in the Jirapa District of Ghana: A count regression approach," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1293472-129, January.
    17. Kenneth W. Moffett & Laurie L. Rice & Ramana Madupalli, 2014. "Young Voters and War: The Iraq War as a Catalyst for Political Participation," Social Science Quarterly, Southwestern Social Science Association, vol. 95(5), pages 1419-1443, December.
    18. Erdogdu, Erkan, 2013. "A cross-country analysis of electricity market reforms: Potential contribution of New Institutional Economics," Energy Economics, Elsevier, vol. 39(C), pages 239-251.
    19. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
    20. R. Freeland, 2010. "True integer value time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(3), pages 217-229, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:83:y:2021:i:2:d:10.1007_s13571-019-00200-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.