IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v86y2024i2d10.1007_s13171-024-00361-x.html
   My bibliography  Save this article

Valid Edgeworth Expansion of the Bootstrap t-statistic of the Whittle MLE for Linear Regression Models with Long-Memory Residuals

Author

Listed:
  • Mosisa Aga

    (Auburn University at Montgomery)

Abstract

In this paper we provide a valid Edgeworth expansion of the parametric bootstrap t-statistic for the Whittle maximum likelihood estimator of a linear regression time series model whose residuals are stationary, Gaussian, and long-memory. Under some sets of conditions on the spectral density function and the parametric values, an Edgeworth expansion of the bootstrap t-statistic of arbitrarily large order of the model is established to have an error of $$o(n^{1-s/2})$$ o ( n 1 - s / 2 ) , where $$s \ge 3$$ s ≥ 3 is a positive integer. The result is obtained by extending the Edgeworth expansion obtained by Andrew et al. (2006), which was established for the parametric bootstrap t-statistic of the same model without the linear regression component.

Suggested Citation

  • Mosisa Aga, 2024. "Valid Edgeworth Expansion of the Bootstrap t-statistic of the Whittle MLE for Linear Regression Models with Long-Memory Residuals," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 920-950, August.
  • Handle: RePEc:spr:sankha:v:86:y:2024:i:2:d:10.1007_s13171-024-00361-x
    DOI: 10.1007/s13171-024-00361-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-024-00361-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-024-00361-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
    2. Young Min Kim & Soumendra N. Lahiri & Daniel J. Nordman, 2013. "A Progressive Block Empirical Likelihood Method for Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1506-1516, December.
    3. ., 2000. "Jevons and the Development of Mathematical Economics," Chapters, in: Economic Thought from Smith to Keynes, chapter 17, pages 185-195, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "The role of initial values in nonstationary fractional time series models," Discussion Papers 12-18, University of Copenhagen. Department of Economics.
    2. Mosisa Aga, 2025. "Bootstrap Probability Errors of the Whittle MLE for Linear Regression Processes with Strongly Dependent Disturbances," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 12(4), pages 1-26, January.
    3. Fallahi, Firouz & Karimi, Mohammad & Voia, Marcel-Cristian, 2016. "Persistence in world energy consumption: Evidence from subsampling confidence intervals," Energy Economics, Elsevier, vol. 57(C), pages 175-183.
    4. Franco, G.C. & Reisen, V.A. & Alves, F.A., 2013. "Bootstrap tests for fractional integration and cointegration: A comparison study," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 87(C), pages 19-29.
    5. Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015. "Higher-order improvements of the sieve bootstrap for fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
    6. Firouz Fallahi & Mohammad Karimi & Marcel-Cristian Voia, 2014. "Are Shocks to Energy Consumption Persistent? Evidence from Subsampling Confidence Intervals," Carleton Economic Papers 14-02, Carleton University, Department of Economics.
    7. Arteche, Josu & Orbe, Jesus, 2016. "A bootstrap approximation for the distribution of the Local Whittle estimator," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 645-660.
    8. George Kapetanios & Fotis Papailias, 2011. "Block Bootstrap and Long Memory," Working Papers 679, Queen Mary University of London, School of Economics and Finance.
    9. Kim, Young Min & Nordman, Daniel J., 2013. "A frequency domain bootstrap for Whittle estimation under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 405-420.
    10. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
    11. Mosisa Aga, 2025. "Delta Method Confidence Intervals for Linear Regression Processes With Long-memory Disturbances," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 12(5), pages 1-12, January.
    12. Mosisa Aga, 2024. "Some Improvements of the Bootstrap over the Delta Method Probability Errors for Whittle Estimators," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 16(5), pages 1-10, December.
    13. Arteche, Josu & Orbe, Jesus, 2009. "Using the bootstrap for finite sample confidence intervals of the log periodogram regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1940-1953, April.
    14. Johansen, Søren & Nielsen, Morten Ørregaard, 2016. "The Role Of Initial Values In Conditional Sum-Of-Squares Estimation Of Nonstationary Fractional Time Series Models," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1095-1139, October.
    15. George Kapetanios, 2004. "A Bootstrap Invariance Principle for Highly Nonstationary Long Memory Processes," Working Papers 507, Queen Mary University of London, School of Economics and Finance.
    16. George Kapetanios & Zacharias Psaradakis, 2006. "Sieve Bootstrap for Strongly Dependent Stationary Processes," Working Papers 552, Queen Mary University of London, School of Economics and Finance.
    17. Arteche, J. & Orbe, J., 2005. "Bootstrapping the log-periodogram regression," Economics Letters, Elsevier, vol. 86(1), pages 79-85, January.
    18. George Kapetanios, 2004. "A Bootstrap Invariance Principle for Highly Nonstationary Long Memory Processes," Working Papers 507, Queen Mary University of London, School of Economics and Finance.
    19. Beran, Jan & Shumeyko, Yevgen, 2012. "Bootstrap testing for discontinuities under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 322-347.
    20. Chioneso S. Marange & Yongsong Qin & Raymond T. Chiruka & Jesca M. Batidzirai, 2023. "A Blockwise Empirical Likelihood Test for Gaussianity in Stationary Autoregressive Processes," Mathematics, MDPI, vol. 11(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:86:y:2024:i:2:d:10.1007_s13171-024-00361-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.