IDEAS home Printed from https://ideas.repec.org/a/ibn/jmrjnl/v16y2024i5p10.html
   My bibliography  Save this article

Some Improvements of the Bootstrap over the Delta Method Probability Errors for Whittle Estimators

Author

Listed:
  • Mosisa Aga

Abstract

The purpose of this paper is to compare the coverage probability errors of the parametric bootstrap with that of the delta method for the covariance parameters of a regression model with auto-regressive fractionally integrated moving average (ARFIMA) errors. We consider the coverage probability errors of both confidence intervals (CIs) and tests based on the the plug-in Whittle maximum likelihood (PWML) estimators. We first show that, under some sets of conditions on the regression coefficients, the spectral density function, and the parameter values, the bounds on the coverage probability errors of the two-sided delta method and parametric bootstrap confidence intervals on the plug-in Whittle likelihood estimator of the covariance parameter are shown to be $O(n^{-1})$ and $o(n^{-3/2}\ln{n})$, respectively, where n is the sample size. Next, we show that those of the one-sided parametric bootstrap confidence intervals are shown to be $O(n^{-1/2})$ and $o(n^{-1}\ln{n})$, respectively. These results show that for both one-sided and two-sided confidence intervals and tests, the bootstrap provides a significant improvement over that of the delta method.

Suggested Citation

  • Mosisa Aga, 2024. "Some Improvements of the Bootstrap over the Delta Method Probability Errors for Whittle Estimators," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 16(5), pages 1-10, December.
  • Handle: RePEc:ibn:jmrjnl:v:16:y:2024:i:5:p:10
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jmr/article/download/0/0/50837/55142
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jmr/article/view/0/50837
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
    2. Kokyo Choy & Masanobu Taniguchi, 2001. "Stochastic Regression Model with Dependent Disturbances," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(2), pages 175-196, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "The role of initial values in nonstationary fractional time series models," Discussion Papers 12-18, University of Copenhagen. Department of Economics.
    2. Mosisa Aga, 2025. "Bootstrap Probability Errors of the Whittle MLE for Linear Regression Processes with Strongly Dependent Disturbances," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 12(4), pages 1-26, January.
    3. Fallahi, Firouz & Karimi, Mohammad & Voia, Marcel-Cristian, 2016. "Persistence in world energy consumption: Evidence from subsampling confidence intervals," Energy Economics, Elsevier, vol. 57(C), pages 175-183.
    4. Franco, G.C. & Reisen, V.A. & Alves, F.A., 2013. "Bootstrap tests for fractional integration and cointegration: A comparison study," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 87(C), pages 19-29.
    5. Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015. "Higher-order improvements of the sieve bootstrap for fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
    6. Firouz Fallahi & Mohammad Karimi & Marcel-Cristian Voia, 2014. "Are Shocks to Energy Consumption Persistent? Evidence from Subsampling Confidence Intervals," Carleton Economic Papers 14-02, Carleton University, Department of Economics.
    7. Arteche, Josu & Orbe, Jesus, 2016. "A bootstrap approximation for the distribution of the Local Whittle estimator," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 645-660.
    8. George Kapetanios & Fotis Papailias, 2011. "Block Bootstrap and Long Memory," Working Papers 679, Queen Mary University of London, School of Economics and Finance.
    9. Kim, Young Min & Nordman, Daniel J., 2013. "A frequency domain bootstrap for Whittle estimation under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 405-420.
    10. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
    11. Mosisa Aga, 2025. "Delta Method Confidence Intervals for Linear Regression Processes With Long-memory Disturbances," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 12(5), pages 1-12, January.
    12. George Kapetanios & Zacharias Psaradakis, 2007. "Semiparametric Sieve-Type GLS Inference in Regressions with Long-Range Dependence," Working Papers 587, Queen Mary University of London, School of Economics and Finance.
    13. Arteche, Josu & Orbe, Jesus, 2009. "Using the bootstrap for finite sample confidence intervals of the log periodogram regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1940-1953, April.
    14. Mosisa Aga, 2024. "Valid Edgeworth Expansion of the Bootstrap t-statistic of the Whittle MLE for Linear Regression Models with Long-Memory Residuals," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 920-950, August.
    15. Johansen, Søren & Nielsen, Morten Ørregaard, 2016. "The Role Of Initial Values In Conditional Sum-Of-Squares Estimation Of Nonstationary Fractional Time Series Models," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1095-1139, October.
    16. George Kapetanios & Zacharias Psaradakis, 2016. "Semiparametric Sieve-Type Generalized Least Squares Inference," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 951-985, June.
    17. George Kapetanios, 2004. "A Bootstrap Invariance Principle for Highly Nonstationary Long Memory Processes," Working Papers 507, Queen Mary University of London, School of Economics and Finance.
    18. George Kapetanios & Zacharias Psaradakis, 2006. "Sieve Bootstrap for Strongly Dependent Stationary Processes," Working Papers 552, Queen Mary University of London, School of Economics and Finance.
    19. Arteche, J. & Orbe, J., 2005. "Bootstrapping the log-periodogram regression," Economics Letters, Elsevier, vol. 86(1), pages 79-85, January.
    20. George Kapetanios, 2004. "A Bootstrap Invariance Principle for Highly Nonstationary Long Memory Processes," Working Papers 507, Queen Mary University of London, School of Economics and Finance.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jmrjnl:v:16:y:2024:i:5:p:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.