IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v108y2013i504p1506-1516.html
   My bibliography  Save this article

A Progressive Block Empirical Likelihood Method for Time Series

Author

Listed:
  • Young Min Kim
  • Soumendra N. Lahiri
  • Daniel J. Nordman

Abstract

This article develops a new blockwise empirical likelihood (BEL) method for stationary, weakly dependent time processes, called the progressive block empirical likelihood (PBEL). In contrast to the standard version of BEL, which uses data blocks of constant length for a given sample size and whose performance can depend crucially on the block length selection, this new approach involves a data-blocking scheme where blocks increase in length by an arithmetic progression. Consequently, no block length selections are required for the PBEL method, which implies a certain type of robustness for this version of BEL. For inference of smooth functions of the process mean, theoretical results establish the chi-squared limit of the log-likelihood ratio based on PBEL, which can be used to calibrate confidence regions. Using the same progressive block scheme, distributional extensions are also provided for other nonparametric likelihoods with time series in the family of Cressie--Read discrepancies. Simulation evidence indicates that the PBEL method can perform comparably to the standard BEL in coverage accuracy (when the latter uses a "good" block choice) and can exhibit more stability, without the need to select a usual block length. Supplementary materials for this article are available online.

Suggested Citation

  • Young Min Kim & Soumendra N. Lahiri & Daniel J. Nordman, 2013. "A Progressive Block Empirical Likelihood Method for Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1506-1516, December.
  • Handle: RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1506-1516
    DOI: 10.1080/01621459.2013.847374
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.847374
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.847374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mosisa Aga, 2024. "Valid Edgeworth Expansion of the Bootstrap t-statistic of the Whittle MLE for Linear Regression Models with Long-Memory Residuals," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 920-950, August.
    2. Chioneso S. Marange & Yongsong Qin & Raymond T. Chiruka & Jesca M. Batidzirai, 2023. "A Blockwise Empirical Likelihood Test for Gaussianity in Stationary Autoregressive Processes," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    3. Xianyang Zhang & Xiaofeng Shao, 2016. "On the coverage bound problem of empirical likelihood methods for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 395-421, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1506-1516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.