Block Bootstrap and Long Memory
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Buhlmann, Peter & Kunsch, Hans R., 1999. "Block length selection in the bootstrap for time series," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 295-310, September.
- Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006.
"Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes,"
Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
- Donald W.K. Andrews & Offer Lieberman, 2002. "Higher-order Improvements of the Parametric Bootstrap for Long-memory Gaussian Processes," Cowles Foundation Discussion Papers 1378, Cowles Foundation for Research in Economics, Yale University.
- Hidalgo, Javier, 2003. "An alternative bootstrap to moving blocks for time series regression models," Journal of Econometrics, Elsevier, vol. 117(2), pages 369-399, December.
- D. S. Poskitt, 2008.
"Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
- D. S. Poskitt, 2006. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non-Invertible Processes," Monash Econometrics and Business Statistics Working Papers 12/06, Monash University, Department of Econometrics and Business Statistics.
- Hidalgo, Javier, 2003. "An alternative bootstrap to moving blocks for time series regression models," LSE Research Online Documents on Economics 6850, London School of Economics and Political Science, LSE Library.
- George Kapetanios & Zacharias Psaradakis, 2006. "Sieve Bootstrap for Strongly Dependent Stationary Processes," Working Papers 552, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios & Zacharias Psaradakis, 2006.
"Sieve Bootstrap for Strongly Dependent Stationary Processes,"
Working Papers
552, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios & Zacharias Psaradakis, 2006. "Sieve Bootstrap for Strongly Dependent Stationary Processes," Working Papers 552, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios, 2004. "A Bootstrap Invariance Principle for Highly Nonstationary Long Memory Processes," Working Papers 507, Queen Mary University of London, School of Economics and Finance.
- Andrew Patton & Dimitris Politis & Halbert White, 2009. "Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 372-375.
- Marc Henry, 2001. "Robust Automatic Bandwidth for Long Memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(3), pages 293-316, May.
- Javier Hidalgo, 2003. "An Alternative Bootstrap to Moving Blocks for Time Series Regression Models," STICERD - Econometrics Paper Series 452, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Kapetanios, George, 2009. "Testing for strict stationarity in financial variables," Journal of Banking & Finance, Elsevier, vol. 33(12), pages 2346-2362, December.
- Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006.
"Consistent estimation of the memory parameter for nonlinear time series,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 211-251, March.
- V Dalla & L Giraitis & J Hidalgo, "undated". "Consistent estimation of the memory parameter for nonlinear time series," Discussion Papers 05/17, Department of Economics, University of York.
- Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameterfor nonlinear time series," STICERD - Econometrics Paper Series /06/497, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- George Kapetanios, 2004.
"A Bootstrap Invariance Principle for Highly Nonstationary Long Memory Processes,"
Working Papers
507, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios, 2004. "A Bootstrap Invariance Principle for Highly Nonstationary Long Memory Processes," Working Papers 507, Queen Mary University of London, School of Economics and Finance.
- Park, Joon Y., 2002. "An Invariance Principle For Sieve Bootstrap In Time Series," Econometric Theory, Cambridge University Press, vol. 18(2), pages 469-490, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Arteche, Josu & Orbe, Jesus, 2016. "A bootstrap approximation for the distribution of the Local Whittle estimator," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 645-660.
- Adam McCloskey, 2013.
"Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.
- Adam McCloskey, 2012. "Estimation of the Long-Memory Stochastic Volatility Model Parameters that is Robust to Level Shifts and Deterministic Trends," Working Papers 2012-17, Brown University, Department of Economics.
- Sizova, Natalia, 2014. "A frequency-domain alternative to long-horizon regressions with application to return predictability," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 261-272.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- George Kapetanios & Fotis Papailias, 2011.
"Block Bootstrap and Long Memory,"
Working Papers
679, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios & Fotis Papailias, 2011. "Block Bootstrap and Long Memory," Working Papers 679, Queen Mary University of London, School of Economics and Finance.
- Arteche, Josu & Orbe, Jesus, 2016. "A bootstrap approximation for the distribution of the Local Whittle estimator," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 645-660.
- Kim, Young Min & Nordman, Daniel J., 2013. "A frequency domain bootstrap for Whittle estimation under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 405-420.
- George Kapetanios, 2004. "A Bootstrap Invariance Principle for Highly Nonstationary Long Memory Processes," Working Papers 507, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios, 2004.
"A Bootstrap Invariance Principle for Highly Nonstationary Long Memory Processes,"
Working Papers
507, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios, 2004. "A Bootstrap Invariance Principle for Highly Nonstationary Long Memory Processes," Working Papers 507, Queen Mary University of London, School of Economics and Finance.
- Peter C. B. Phillips, 2021. "Pitfalls in Bootstrapping Spurious Regression," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 163-217, December.
- Arteche, Josu & Orbe, Jesus, 2009. "Using the bootstrap for finite sample confidence intervals of the log periodogram regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1940-1953, April.
- George Kapetanios & Zacharias Psaradakis, 2006.
"Sieve Bootstrap for Strongly Dependent Stationary Processes,"
Working Papers
552, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios & Zacharias Psaradakis, 2006. "Sieve Bootstrap for Strongly Dependent Stationary Processes," Working Papers 552, Queen Mary University of London, School of Economics and Finance.
- repec:ehu:biltok:48980 is not listed on IDEAS
- Paulo M. D. C. Parente & Richard J. Smith, 2021.
"Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
- Paulo M.D.C. Parente & Richard J. Smith, 2018. "Quasi-Maximum Likelihood and the Kernel Block Bootstrap for Nonlinear Dynamic Models," Working Papers REM 2018/59, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Paulo Parente & Richard J. Smith, 2019. "Quasi-maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," CeMMAP working papers CWP60/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hidalgo, Javier, 2009. "Goodness of fit for lattice processes," Journal of Econometrics, Elsevier, vol. 151(2), pages 113-128, August.
- Kirch Claudia, 2007. "Resampling in the frequency domain of time series to determine critical values for change-point tests," Statistics & Risk Modeling, De Gruyter, vol. 25(3), pages 237-261, July.
- Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
- Hidalgo, Javier, 2007. "Specification testing for regression models with dependent data," LSE Research Online Documents on Economics 6799, London School of Economics and Political Science, LSE Library.
- Lazarova, Stepana, 2005. "Testing for structural change in regression with long memory processes," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 329-372.
- Violetta Dalla & Javier Hidalgo, 2005. "A Parametric Bootstrap Test for Cycles," STICERD - Econometrics Paper Series 486, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Hinich Melvin J & Mendes Eduardo M & Stone Lewi, 2005. "Detecting Nonlinearity in Time Series: Surrogate and Bootstrap Approaches," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-15, December.
- Javier Hidalgo & Marcia M Schafgans, 2017. "Inference Without Smoothing for Large Panels with Cross- Sectional and Temporal Dependence," STICERD - Econometrics Paper Series 597, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Guillermo Ferreira & Jorge Mateu & Jose A. Vilar & Joel Muñoz, 2021. "Bootstrapping regression models with locally stationary disturbances," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 341-363, June.
- J. Hidalgo & M. Schafgans, 2020. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Papers 2006.14409, arXiv.org.
- Margherita Gerolimetto & Stefano Magrini, 2020. "Testing for boundary conditions in case of fractionally integrated processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 357-371, June.
More about this item
Keywords
Block Bootstrap; Long memory; Resampling; Strong dependence;All these keywords.
JEL classification:
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qmw:qmwecw:679. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicholas Owen (email available below). General contact details of provider: https://edirc.repec.org/data/deqmwuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.