IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v7y2019i1p126-132n5.html
   My bibliography  Save this article

On the lower bound of Spearman’s footrule

Author

Listed:
  • Fuchs Sebastian

    (Technische Universität Dortmund)

  • McCord Yann

    (Technische Universität Dresden)

Abstract

Úbeda-Flores showed that the range of multivariate Spearman’s footrule for copulas of dimension d ≥ 2 is contained in the interval [−1/d, 1], that the upper bound is attained exclusively by the upper Fréchet-Hoeffding bound, and that the lower bound is sharp in the case where d = 2. The present paper provides characterizations of the copulas attaining the lower bound of multivariate Spearman’s footrule in terms of the copula measure but also via the copula’s diagonal section.

Suggested Citation

  • Fuchs Sebastian & McCord Yann, 2019. "On the lower bound of Spearman’s footrule," Dependence Modeling, De Gruyter, vol. 7(1), pages 126-132, January.
  • Handle: RePEc:vrs:demode:v:7:y:2019:i:1:p:126-132:n:5
    DOI: 10.1515/demo-2019-0005
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2019-0005
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2019-0005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Fuchs & Yann McCord & Klaus D. Schmidt, 2018. "Characterizations of Copulas Attaining the Bounds of Multivariate Kendall’s Tau," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 424-438, August.
    2. Lee, Paul H. & Yu, Philip L.H., 2010. "Distance-based tree models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1672-1682, June.
    3. Manuel Úbeda-Flores, 2005. "Multivariate versions of Blomqvist’s beta and Spearman’s footrule," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 781-788, December.
    4. Durante, Fabrizio & Fernández-Sánchez, Juan, 2010. "Multivariate shuffles and approximation of copulas," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1827-1834, December.
    5. Taylor M. D., 2016. "Multivariate measures of concordance for copulas and their marginals," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Youn Ahn & Sebastian Fuchs, 2020. "On Minimal Copulas under the Concordance Order," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 762-780, March.
    2. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    3. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    4. Fuchs, Sebastian & Schmidt, Klaus D., 2021. "On order statistics and Kendall’s tau," Statistics & Probability Letters, Elsevier, vol. 169(C).
    5. Sebastian Fuchs & Yann McCord & Klaus D. Schmidt, 2018. "Characterizations of Copulas Attaining the Bounds of Multivariate Kendall’s Tau," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 424-438, August.
    6. Fuchs, Sebastian & Di Lascio, F. Marta L. & Durante, Fabrizio, 2021. "Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    7. Martynas Manstavičius, 2022. "Diversity of Bivariate Concordance Measures," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
    8. Damjana Kokol Bukovv{s}ek & Tomav{z} Kov{s}ir & Blav{z} Mojv{s}kerc & Matjav{z} Omladiv{c}, 2020. "Spearman's footrule and Gini's gamma: Local bounds for bivariate copulas and the exact region with respect to Blomqvist's beta," Papers 2009.06221, arXiv.org, revised Jan 2021.
    9. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    10. Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.
    11. Ghimire, Ramesh & Green, Gary T. & Paudel, Krishna P. & Poudyal, Neelam C. & Cordell, H. Ken, 2017. "Visitors' Preferences for Freshwater Amenity Characteristics: Implications from the U.S. Household Survey," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 42(1), pages 1-24, January.
    12. Amaya, Johanna & Arellana, Julian & Delgado-Lindeman, Maira, 2020. "Stakeholders perceptions to sustainable urban freight policies in emerging markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 329-348.
    13. Akbari, Sina & Escobedo, Adolfo R., 2023. "Beyond kemeny rank aggregation: A parameterizable-penalty framework for robust ranking aggregation with ties," Omega, Elsevier, vol. 119(C).
    14. Antonella Plaia & Simona Buscemi & Johannes Fürnkranz & Eneldo Loza Mencía, 2022. "Comparing Boosting and Bagging for Decision Trees of Rankings," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 78-99, March.
    15. Lee, Paul H. & Yu, Philip L.H., 2012. "Mixtures of weighted distance-based models for ranking data with applications in political studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2486-2500.
    16. Gaißer, Sandra & Ruppert, Martin & Schmid, Friedrich, 2010. "A multivariate version of Hoeffding's Phi-Square," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2571-2586, November.
    17. Jianbo Li & Minggao Gu & Tao Hu, 2012. "General partially linear varying-coefficient transformation models for ranking data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1475-1488, January.
    18. Antonella Plaia & Mariangela Sciandra, 2019. "Weighted distance-based trees for ranking data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 427-444, June.
    19. Yu-Shan Shih & Kuang-Hsun Liu, 2019. "Regression trees for detecting preference patterns from rank data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 683-702, September.
    20. Durante, Fabrizio & Sánchez, Juan Fernández, 2012. "On the approximation of copulas via shuffles of Min," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1761-1767.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:7:y:2019:i:1:p:126-132:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.