On the lower bound of Spearman’s footrule
Author
Abstract
Suggested Citation
DOI: 10.1515/demo-2019-0005
Download full text from publisher
References listed on IDEAS
- Sebastian Fuchs & Yann McCord & Klaus D. Schmidt, 2018. "Characterizations of Copulas Attaining the Bounds of Multivariate Kendall’s Tau," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 424-438, August.
- Lee, Paul H. & Yu, Philip L.H., 2010. "Distance-based tree models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1672-1682, June.
- Manuel Úbeda-Flores, 2005. "Multivariate versions of Blomqvist’s beta and Spearman’s footrule," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 781-788, December.
- Durante, Fabrizio & Fernández-Sánchez, Juan, 2010. "Multivariate shuffles and approximation of copulas," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1827-1834, December.
- Taylor M. D., 2016. "Multivariate measures of concordance for copulas and their marginals," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-13, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jae Youn Ahn & Sebastian Fuchs, 2020. "On Minimal Copulas under the Concordance Order," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 762-780, March.
- Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
- Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
- Fuchs, Sebastian & Schmidt, Klaus D., 2021. "On order statistics and Kendall’s tau," Statistics & Probability Letters, Elsevier, vol. 169(C).
- Sebastian Fuchs & Yann McCord & Klaus D. Schmidt, 2018. "Characterizations of Copulas Attaining the Bounds of Multivariate Kendall’s Tau," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 424-438, August.
- Fuchs, Sebastian & Di Lascio, F. Marta L. & Durante, Fabrizio, 2021. "Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Martynas Manstavičius, 2022. "Diversity of Bivariate Concordance Measures," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
- Damjana Kokol Bukovv{s}ek & Tomav{z} Kov{s}ir & Blav{z} Mojv{s}kerc & Matjav{z} Omladiv{c}, 2020. "Spearman's footrule and Gini's gamma: Local bounds for bivariate copulas and the exact region with respect to Blomqvist's beta," Papers 2009.06221, arXiv.org, revised Jan 2021.
- Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
- Koen Decancq, 2020.
"Measuring cumulative deprivation and affluence based on the diagonal dependence diagram,"
METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.
- Decancq, Koen, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," LIDAM Reprints CORE 3119, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," Working Papers 2004, Herman Deleeck Centre for Social Policy, University of Antwerp.
- Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," Working Papers of Department of Economics, Leuven 652198, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
- Ghimire, Ramesh & Green, Gary T. & Paudel, Krishna P. & Poudyal, Neelam C. & Cordell, H. Ken, 2017. "Visitors' Preferences for Freshwater Amenity Characteristics: Implications from the U.S. Household Survey," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 42(1), pages 1-24, January.
- Amaya, Johanna & Arellana, Julian & Delgado-Lindeman, Maira, 2020. "Stakeholders perceptions to sustainable urban freight policies in emerging markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 329-348.
- Akbari, Sina & Escobedo, Adolfo R., 2023. "Beyond kemeny rank aggregation: A parameterizable-penalty framework for robust ranking aggregation with ties," Omega, Elsevier, vol. 119(C).
- Antonella Plaia & Simona Buscemi & Johannes Fürnkranz & Eneldo Loza Mencía, 2022. "Comparing Boosting and Bagging for Decision Trees of Rankings," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 78-99, March.
- Lee, Paul H. & Yu, Philip L.H., 2012. "Mixtures of weighted distance-based models for ranking data with applications in political studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2486-2500.
- Gaißer, Sandra & Ruppert, Martin & Schmid, Friedrich, 2010. "A multivariate version of Hoeffding's Phi-Square," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2571-2586, November.
- Jianbo Li & Minggao Gu & Tao Hu, 2012. "General partially linear varying-coefficient transformation models for ranking data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1475-1488, January.
- Antonella Plaia & Mariangela Sciandra, 2019. "Weighted distance-based trees for ranking data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 427-444, June.
- Yu-Shan Shih & Kuang-Hsun Liu, 2019. "Regression trees for detecting preference patterns from rank data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 683-702, September.
- Durante, Fabrizio & Sánchez, Juan Fernández, 2012. "On the approximation of copulas via shuffles of Min," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1761-1767.
More about this item
Keywords
copulas; measures of dependence; sparse copulas; Spearman’s footrule;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:7:y:2019:i:1:p:126-132:n:5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.