IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v84y2022i2d10.1007_s13171-019-00175-2.html
   My bibliography  Save this article

Inferences and Optimal Censoring Schemes for Progressively First-Failure Censored Nadarajah-Haghighi Distribution

Author

Listed:
  • Samir K. Ashour

    (Institute of Statistical Studies and Research, Cairo University)

  • Ahmed A. El-Sheikh

    (Institute of Statistical Studies and Research, Cairo University)

  • Ahmed Elshahhat

    (Zagazig University)

Abstract

A new extension of the exponential distribution, proposed by Nadarajah and Haghighi (Statistics 45, 543–558 (2011)), is an alternative to the gamma, Weibull and generalized-exponential models, it is also known as NH distribution. The maximum likelihood and Bayes inferential approaches for estimating the unknown two-parameters and some lifetime parameters such as survival and hazard rate functions of the NH distribution in presence of progressive first-failure censored sampling are considered. Based on observed Fisher’s information matrix, the approximate confidence intervals for the two-parameters, and any function of them, are constructed. Using Lindley’s approximation and Markov chain Monte Carlo methods under the assumption of conjugate gamma priors, the Bayes estimates and associate highest posterior density credible intervals for the unknown parameters and reliability characteristics are developed based on squared error loss function. Although the proposed estimators cannot be expressed in explicit forms, these can be easily obtained through the use of appropriate numerical techniques. A Monte Carlo simulation study is carried out to examine the performance of proposed methods. Using different optimality criteria, an optimal censoring scheme has been suggested. Finally, a real data set is analyzed for illustration purposes.

Suggested Citation

  • Samir K. Ashour & Ahmed A. El-Sheikh & Ahmed Elshahhat, 2022. "Inferences and Optimal Censoring Schemes for Progressively First-Failure Censored Nadarajah-Haghighi Distribution," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 885-923, August.
  • Handle: RePEc:spr:sankha:v:84:y:2022:i:2:d:10.1007_s13171-019-00175-2
    DOI: 10.1007/s13171-019-00175-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-019-00175-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-019-00175-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    2. Wu, Shuo-Jye & Kus, Coskun, 2009. "On estimation based on progressive first-failure-censored sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3659-3670, August.
    3. Tanmay Sen & Yogesh Mani Tripathi & Ritwik Bhattacharya, 2018. "Statistical Inference and Optimum Life Testing Plans Under Type-II Hybrid Censoring Scheme," Annals of Data Science, Springer, vol. 5(4), pages 679-708, December.
    4. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    5. Sanku Dey & Chunfang Zhang & A. Asgharzadeh & M. Ghorbannezhad, 2017. "Comparisons of Methods of Estimation for the NH Distribution," Annals of Data Science, Springer, vol. 4(4), pages 441-455, December.
    6. Biswabrata Pradhan & Debasis Kundu, 2009. "On progressively censored generalized exponential distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 497-515, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. EL-Sayed A. El-Sherpieny & Ahmed Elshahhat & Nader M. Abdallah, 2024. "Statistical Analysis of Improved Type-II Adaptive Progressive Hybrid Censored NH Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 721-754, August.
    2. Ahmed Elshahhat & Refah Alotaibi & Mazen Nassar, 2022. "Inferences for Nadarajah–Haghighi Parameters via Type-II Adaptive Progressive Hybrid Censoring with Applications," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
    3. Ahmed Elshahhat & Osama E. Abo-Kasem & Heba S. Mohammed, 2023. "Survival Analysis of the PRC Model from Adaptive Progressively Hybrid Type-II Censoring and Its Engineering Applications," Mathematics, MDPI, vol. 11(14), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Hermanns & E. Cramer, 2018. "Inference with progressively censored k-out-of-n system lifetime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 787-810, December.
    2. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    3. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    4. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    5. John-Fritz Thony & Jean Vaillant, 2022. "Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    6. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    7. Manisera, Marica & Zuccolotto, Paola, 2014. "Modeling rating data with Nonlinear CUB models," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 100-118.
    8. Teresa Backhaus, 2022. "Training in Late Careers - A Structural Approach," CRC TR 224 Discussion Paper Series crctr224_2022_382, University of Bonn and University of Mannheim, Germany.
    9. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum choice models: A flexible new approach for understanding moral decision-making," Journal of choice modelling, Elsevier, vol. 37(C).
    10. Granado-Díaz, Rubén & Villanueva, Anastasio J. & Gómez-Limón, José A., 2022. "Willingness to accept for rewilding farmland in environmentally sensitive areas," Land Use Policy, Elsevier, vol. 116(C).
    11. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    12. Thoralf Meyer & Paul Holloway & Thomas B. Christiansen & Jennifer A. Miller & Paolo D’Odorico & Gregory S. Okin, 2019. "An Assessment of Multiple Drivers Determining Woody Species Composition and Structure: A Case Study from the Kalahari, Botswana," Land, MDPI, vol. 8(8), pages 1-14, August.
    13. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    14. Devendra Kumar & M. Nassar & Sanku Dey, 2023. "Progressive Type-II Censored Data and Associated Inference with Application Based on Li–Li Rayleigh Distribution," Annals of Data Science, Springer, vol. 10(1), pages 43-71, February.
    15. Y. L. Lio & Tzong-Ru Tsai, 2012. "Estimation of δ= P ( X > Y ) for Burr XII distribution based on the progressively first failure-censored samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 309-322, April.
    16. Peter Andre, 2022. "Shallow Meritocracy," CRC TR 224 Discussion Paper Series crctr224_2022_318v3, University of Bonn and University of Mannheim, Germany.
    17. Ibrahim Elbatal & Naif Alotaibi & Salem A. Alyami & Mohammed Elgarhy & Ahmed R. El-Saeed, 2022. "Bayesian and Non-Bayesian Estimation of the Nadaraj ah–Haghighi Distribution: Using Progressive Type-1 Censoring Scheme," Mathematics, MDPI, vol. 10(5), pages 1-16, February.
    18. Jens Rommel & Julian Sagebiel & Marieke Cornelia Baaken & Jesús Barreiro‐Hurlé & Douadia Bougherara & Luigi Cembalo & Marija Cerjak & Tajana Čop & Mikołaj Czajkowski & María Espinosa‐Goded & Julia Höh, 2023. "Farmers' risk preferences in 11 European farming systems: A multi‐country replication of Bocquého et al. ()," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1374-1399, September.
    19. Abdullah Fathi & Al-Wageh A. Farghal & Ahmed A. Soliman, 2024. "Inference on Weibull inverted exponential distribution under progressive first-failure censoring with constant-stress partially accelerated life test," Statistical Papers, Springer, vol. 65(8), pages 5021-5053, October.
    20. Sarrias, Mauricio, 2021. "A two recursive equation model to correct for endogeneity in latent class binary probit models," Journal of choice modelling, Elsevier, vol. 40(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:84:y:2022:i:2:d:10.1007_s13171-019-00175-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.