IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3124-d1194598.html
   My bibliography  Save this article

Survival Analysis of the PRC Model from Adaptive Progressively Hybrid Type-II Censoring and Its Engineering Applications

Author

Listed:
  • Ahmed Elshahhat

    (Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt)

  • Osama E. Abo-Kasem

    (Department of Statistics, Faculty of Commerce, Zagazig University, Zagazig 44519, Egypt)

  • Heba S. Mohammed

    (Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

Abstract

A new two-parameter statistical model, obtained by compounding the generalized-exponential and exponential distributions, called the PRC lifetime model, is explored in this paper. This model can be easily linked to other well-known six-lifetime models; namely the exponential, log-logistic, Burr, Pareto and generalized Pareto models. Adaptive progressively hybrid Type-II censored strategy, used to increase the efficiency of statistical inferential results and save the total duration of a test, has become widely used in various sectors such as medicine, biology, engineering, etc. Via maximum likelihood and Bayes inferential methodologies, given the presence of such censored data, the challenge of estimating the unknown parameters and some reliability time features, such as reliability and failure rate functions, of the PRC model is examined. The Markov-Chain Monte Carlo sampler, when the model parameters are assumed to have independent gamma density priors, is utilized to produce the Bayes’ infer under the symmetric (squared-error) loss of all unknown subjects. Asymptotic confidence intervals as well as the highest posterior density intervals of the unknown parameters and the unknown reliability indices are also created. An extensive Monte Carlo simulation is implemented to investigate the accuracy of the acquired point and interval estimators. Four various optimality criteria, to select the best progressive censored design, are used. To demonstrate the applicability and feasibility of the proposed model in a real-world scenario, two data sets from the engineering sector; one based on industrial devices and the other on aircraft windshield, are analyzed. Numerical evaluations showed that the PRC model furnishes a superior fit compared to seven other models in the literature, including: alpha-power exponential, log-logistic, Nadarajah–Haghighi, generalized-exponential, Weibull, gamma and exponential lifetime distributions. The findings demonstrate that, in order to obtain the necessary estimators, the Bayes’ paradigm via Metropolis–Hastings sampler is recommended compared to its competitive likelihood approach.

Suggested Citation

  • Ahmed Elshahhat & Osama E. Abo-Kasem & Heba S. Mohammed, 2023. "Survival Analysis of the PRC Model from Adaptive Progressively Hybrid Type-II Censoring and Its Engineering Applications," Mathematics, MDPI, vol. 11(14), pages 1-26, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3124-:d:1194598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Elshahhat & Mazen Nassar, 2021. "Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data," Computational Statistics, Springer, vol. 36(3), pages 1965-1990, September.
    2. Samir K. Ashour & Ahmed A. El-Sheikh & Ahmed Elshahhat, 2022. "Inferences and Optimal Censoring Schemes for Progressively First-Failure Censored Nadarajah-Haghighi Distribution," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 885-923, August.
    3. Abbas Mahdavi & Debasis Kundu, 2017. "A new method for generating distributions with an application to exponential distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(13), pages 6543-6557, July.
    4. Saieed F. Ateya & M. M. Amein & Heba S. Mohammed, 2022. "Prediction under an adaptive progressive type-II censoring scheme for Burr Type-XII distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(12), pages 4029-4041, May.
    5. Tanmay Sen & Yogesh Mani Tripathi & Ritwik Bhattacharya, 2018. "Statistical Inference and Optimum Life Testing Plans Under Type-II Hybrid Censoring Scheme," Annals of Data Science, Springer, vol. 5(4), pages 679-708, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Judson Estes & Vijitashwa Pandey, 2023. "Investigating the Effect of Organization Structure and Cognitive Profiles on Engineering Team Performance Using Agent-Based Models and Graph Theory," Mathematics, MDPI, vol. 11(21), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    2. Ahmed Elshahhat & Refah Alotaibi & Mazen Nassar, 2022. "Inferences for Nadarajah–Haghighi Parameters via Type-II Adaptive Progressive Hybrid Censoring with Applications," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
    3. Jemilohun Vincent Gbenga & Ipinyomi Reuben Adeyemi, 2022. "Alpha Power Extended Inverse Weibull Poisson Distribution: Properties, Inference, and Applications to lifetime data," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(1), pages 1-10, March.
    4. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    5. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    6. Sajid Hussain & Mahmood Ul Hassan & Muhammad Sajid Rashid & Rashid Ahmed, 2023. "The Exponentiated Power Alpha Index Generalized Family of Distributions: Properties and Applications," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    7. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    8. Abdulkareem M. Basheer, 2022. "Marshall–Olkin Alpha Power Inverse Exponential Distribution: Properties and Applications," Annals of Data Science, Springer, vol. 9(2), pages 301-313, April.
    9. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    10. Devendra Kumar & M. Nassar & Sanku Dey, 2023. "Progressive Type-II Censored Data and Associated Inference with Application Based on Li–Li Rayleigh Distribution," Annals of Data Science, Springer, vol. 10(1), pages 43-71, February.
    11. Ahmed Elshahhat & EL-Sayed A. El-Sherpieny & Amal S. Hassan, 2023. "The Pareto–Poisson Distribution: Characteristics, Estimations and Engineering Applications," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1058-1099, February.
    12. Mashail M. AL Sobhi, 2020. "The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    13. Abdisalam Hassan Muse & Samuel M. Mwalili & Oscar Ngesa, 2021. "On the Log-Logistic Distribution and Its Generalizations: A Survey," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-93, June.
    14. Sajid Hussain & Muhammad Sajid Rashid & Mahmood Ul Hassan & Rashid Ahmed, 2022. "The Generalized Alpha Exponent Power Family of Distributions: Properties and Applications," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    15. Ehab M. Almetwally & Hanan A. Haj Ahmad, 2020. "A new generalization of the Pareto distribution and its applications," Statistics in Transition New Series, Polish Statistical Association, vol. 21(5), pages 61-84, December.
    16. Harsh Tripathi & Varun Agiwal, 2024. "A new version of univariate Rayleigh distribution: properties, estimation and it’s application," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(11), pages 5367-5377, November.
    17. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    18. Abdulhakim A. Al-Babtain & Mohammed K. Shakhatreh & Mazen Nassar & Ahmed Z. Afify, 2020. "A New Modified Kies Family: Properties, Estimation Under Complete and Type-II Censored Samples, and Engineering Applications," Mathematics, MDPI, vol. 8(8), pages 1-24, August.
    19. Maha A. D. Aldahlan & Ahmed Z. Afify, 2020. "The Odd Exponentiated Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data," Mathematics, MDPI, vol. 8(10), pages 1-26, October.
    20. M. Nassar & A. Alzaatreh & O. Abo-Kasem & M. Mead & M. Mansoor, 2018. "A New Family of Generalized Distributions Based on Alpha Power Transformation with Application to Cancer Data," Annals of Data Science, Springer, vol. 5(3), pages 421-436, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3124-:d:1194598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.