IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i10p3659-3670.html
   My bibliography  Save this article

On estimation based on progressive first-failure-censored sampling

Author

Listed:
  • Wu, Shuo-Jye
  • Kus, Coskun

Abstract

In this paper, a new life test plan called a progressive first-failure-censoring scheme is introduced. Maximum likelihood estimates, exact and approximate confidence intervals and an exact confidence region for the parameters of the Weibull distribution are discussed for the new censoring scheme. A numerical example is provided to illustrate the proposed censoring scheme. Some simulation results are presented and used to assess the performance of the proposed estimation methods developed here. The expected time required to complete the proposed life test plan is derived. Finally, a numerical study for comparing among different censoring schemes in terms of expected test time is given.

Suggested Citation

  • Wu, Shuo-Jye & Kus, Coskun, 2009. "On estimation based on progressive first-failure-censored sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3659-3670, August.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:10:p:3659-3670
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00105-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siu-Keung Tse & Hak-Keung Yuen, 1998. "Expected experiment times for the Weibull distribution under progressive censoring with random removals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(1), pages 75-83.
    2. Ng, H. K. T. & Chan, P. S. & Balakrishnan, N., 2002. "Estimation of parameters from progressively censored data using EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 371-386, June.
    3. Basak, Indrani & Basak, Prasanta & Balakrishnan, N., 2006. "On some predictors of times to failure of censored items in progressively censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1313-1337, March.
    4. Burkschat, M. & Cramer, E. & Kamps, U., 2006. "On optimal schemes in progressive censoring," Statistics & Probability Letters, Elsevier, vol. 76(10), pages 1032-1036, May.
    5. Shuo‐Jye Wu & Dar‐Hsin Chen & Shyi‐Tien Chen, 2006. "Bayesian inference for Rayleigh distribution under progressive censored sample," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(3), pages 269-279, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soliman, Ahmed A. & Abd-Ellah, Ahmed H. & Abou-Elheggag, Naser A. & Abd-Elmougod, Gamal A., 2012. "Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2471-2485.
    2. Heba S. Mohammed & Saieed F. Ateya & Essam K. AL-Hussaini, 2017. "Estimation based on progressive first-failure censoring from exponentiated exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1479-1494, June.
    3. Fengshi Zhang & Wenhao Gui, 2020. "Parameter and Reliability Inferences of Inverted Exponentiated Half-Logistic Distribution under the Progressive First-Failure Censoring," Mathematics, MDPI, vol. 8(5), pages 1-29, May.
    4. Jessie Marie Byrnes & Yu-Jau Lin & Tzong-Ru Tsai & Yuhlong Lio, 2019. "Bayesian Inference of δ = P ( X < Y ) for Burr Type XII Distribution Based on Progressively First Failure-Censored Samples," Mathematics, MDPI, vol. 7(9), pages 1-24, September.
    5. Abdullah Fathi & Al-Wageh A. Farghal & Ahmed A. Soliman, 2022. "Bayesian and Non-Bayesian Inference for Weibull Inverted Exponential Model under Progressive First-Failure Censoring Data," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    6. Ahmed Soliman & N. Abou-elheggag & A. Abd ellah & A. Modhesh, 2012. "Bayesian and non-Bayesian inferences of the Burr-XII distribution for progressive first-failure censored data," METRON, Springer;Sapienza Università di Roma, vol. 70(1), pages 1-25, April.
    7. Essam A. Ahmed & Mahmoud El-Morshedy & Laila A. Al-Essa & Mohamed S. Eliwa, 2023. "Statistical Inference on the Entropy Measures of Gamma Distribution under Progressive Censoring: EM and MCMC Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-30, May.
    8. M. Hermanns & E. Cramer, 2018. "Inference with progressively censored k-out-of-n system lifetime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 787-810, December.
    9. Shubham Saini & Renu Garg, 2022. "Reliability inference for multicomponent stress–strength model from Kumaraswamy-G family of distributions based on progressively first failure censored samples," Computational Statistics, Springer, vol. 37(4), pages 1795-1837, September.
    10. Wang, Liang & Shi, Yimin, 2012. "Reliability analysis based on progressively first-failure-censored samples for the proportional hazard rate model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(8), pages 1383-1395.
    11. Y. L. Lio & Tzong-Ru Tsai, 2012. "Estimation of δ= P ( X > Y ) for Burr XII distribution based on the progressively first failure-censored samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 309-322, April.
    12. Shuo Gao & Wenhao Gui, 2019. "Parameter estimation of the inverted exponentiated Rayleigh distribution based on progressively first-failure censored samples," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 925-936, October.
    13. Mohamed A. W. Mahmoud & Mohamed G. M. Ghazal & Hossam M. M. Radwan, 2023. "Bayesian Estimation and Optimal Censoring of Inverted Generalized Linear Exponential Distribution Using Progressive First Failure Censoring," Annals of Data Science, Springer, vol. 10(2), pages 527-554, April.
    14. Samir K. Ashour & Ahmed A. El-Sheikh & Ahmed Elshahhat, 2022. "Inferences and Optimal Censoring Schemes for Progressively First-Failure Censored Nadarajah-Haghighi Distribution," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 885-923, August.
    15. Essam A. Ahmed, 2017. "Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1576-1608, July.
    16. Lauren Sauer & Yuhlong Lio & Tzong-Ru Tsai, 2020. "Reliability Inference for the Multicomponent System Based on Progressively Type II Censored Samples from Generalized Pareto Distributions," Mathematics, MDPI, vol. 8(7), pages 1-14, July.
    17. Mohammed S. Kotb & Huda M. Alomari, 2024. "Estimating the entropy of a Rayleigh model under progressive first-failure censoring," Statistical Papers, Springer, vol. 65(5), pages 3135-3154, July.
    18. Kapil Kumar & Indrajeet Kumar & Hon Keung Tony Ng, 2024. "On Estimation of Shannon’s Entropy of Maxwell Distribution Based on Progressively First-Failure Censored Data," Stats, MDPI, vol. 7(1), pages 1-22, February.
    19. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    20. Wu, Shuo-Jye & Huang, Syuan-Rong, 2012. "Progressively first-failure censored reliability sampling plans with cost constraint," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2018-2030.
    21. Ajit Chaturvedi & Renu Garg & Shubham Saini, 2022. "Estimation and testing procedures for the reliability characteristics of Kumaraswamy-G distributions based on the progressively first failure censored samples," OPSEARCH, Springer;Operational Research Society of India, vol. 59(2), pages 494-517, June.
    22. Sukhdev Singh & Yogesh Tripathi, 2015. "Reliability sampling plans for a lognormal distribution under progressive first-failure censoring with cost constraint," Statistical Papers, Springer, vol. 56(3), pages 773-817, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. El-Din & A. Shafay, 2013. "One- and two-sample Bayesian prediction intervals based on progressively Type-II censored data," Statistical Papers, Springer, vol. 54(2), pages 287-307, May.
    2. Omar M. Bdair & Mohammad Z. Raqab, 2022. "Prediction of future censored lifetimes from mixture exponential distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 833-857, October.
    3. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    4. Pareek, Bhuvanesh & Kundu, Debasis & Kumar, Sumit, 2009. "On progressively censored competing risks data for Weibull distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4083-4094, October.
    5. Essam A. Ahmed, 2017. "Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1576-1608, July.
    6. Balakrishnan, N. & Mitra, Debanjan, 2012. "Left truncated and right censored Weibull data and likelihood inference with an illustration," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4011-4025.
    7. Abdel-Hamid, Alaa H., 2009. "Constant-partially accelerated life tests for Burr type-XII distribution with progressive type-II censoring," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2511-2523, May.
    8. Raqab, Mohammad Z. & Asgharzadeh, A. & Valiollahi, R., 2010. "Prediction for Pareto distribution based on progressively Type-II censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1732-1743, July.
    9. Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2018. "Bayesian inference for Poisson-inverse exponential distribution under progressive type-II censoring with binomial removal," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1235-1249, December.
    10. Balakrishnan, N. & Saleh, H.M., 2011. "Relations for moments of progressively Type-II censored order statistics from half-logistic distribution with applications to inference," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2775-2792, October.
    11. Arturo Fernandez, 2005. "Progressively censored variables sampling plans for two-parameter exponential distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(8), pages 823-829.
    12. N. Balakrishnan & Erhard Cramer, 2008. "Progressive censoring from heterogeneous distributions with applications to robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(1), pages 151-171, March.
    13. Altındağ, Ömer & Aydoğdu, Halil, 2021. "Estimation of renewal function under progressively censored data and its applications," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    15. Valiollahi, R. & Raqab, Mohammad Z. & Asgharzadeh, A. & Alqallaf, F.A., 2018. "Estimation and prediction for power Lindley distribution under progressively type II right censored samples," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 149(C), pages 32-47.
    16. Saadati Nik, A. & Asgharzadeh, A. & Raqab, Mohammad Z., 2021. "Estimation and prediction for a new Pareto-type distribution under progressive type-II censoring," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 508-530.
    17. M. M. Mohie El-Din & M. Nagy & M. H. Abu-Moussa, 2019. "Estimation and Prediction for Gompertz Distribution Under the Generalized Progressive Hybrid Censored Data," Annals of Data Science, Springer, vol. 6(4), pages 673-705, December.
    18. Kousik Maiti & Suchandan Kayal, 2023. "Estimating Reliability Characteristics of the Log-Logistic Distribution Under Progressive Censoring with Two Applications," Annals of Data Science, Springer, vol. 10(1), pages 89-128, February.
    19. Xun Xiao & Amitava Mukherjee & Min Xie, 2016. "Estimation procedures for grouped data – a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2110-2130, August.
    20. Basak, Prasanta & Basak, Indrani & Balakrishnan, N., 2009. "Estimation for the three-parameter lognormal distribution based on progressively censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3580-3592, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:10:p:3659-3670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.