IDEAS home Printed from https://ideas.repec.org/a/spr/reaccs/v25y2020i4d10.1007_s11142-020-09544-x.html
   My bibliography  Save this article

Do going concern opinions provide incremental information to predict corporate defaults?

Author

Listed:
  • Elizabeth Gutierrez

    (Universidad de Chile)

  • Jake Krupa

    (University of Miami)

  • Miguel Minutti-Meza

    (University of Miami)

  • Maria Vulcheva

    (Florida International University)

Abstract

Investors, regulators, and academics question the usefulness of going concern opinions (GCOs). We assess whether GCOs provide incremental information, relative to other predictors of corporate default. Our measure of incremental information is the additional predictive power that GCOs give to a default model. Using data from 1996 to 2015, initially we find no difference in predictive power between GCOs alone and a default model that includes financial ratios. However, there is an imperfect overlap between GCOs and other predictors. We show that GCOs increase the predictive power of several models that include ratios, market variables, probability of default estimates, and credit ratings. Using a model that includes ratios and market variables, GCOs increase the number of predicted defaults by 4.4%, without increasing Type II errors. Our findings suggest that GCOs summarize a complex set of conditions not captured by other predictors of default.

Suggested Citation

  • Elizabeth Gutierrez & Jake Krupa & Miguel Minutti-Meza & Maria Vulcheva, 2020. "Do going concern opinions provide incremental information to predict corporate defaults?," Review of Accounting Studies, Springer, vol. 25(4), pages 1344-1381, December.
  • Handle: RePEc:spr:reaccs:v:25:y:2020:i:4:d:10.1007_s11142-020-09544-x
    DOI: 10.1007/s11142-020-09544-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11142-020-09544-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11142-020-09544-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David F. Larcker & Anastasia A. Zakolyukina, 2012. "Detecting Deceptive Discussions in Conference Calls," Journal of Accounting Research, Wiley Blackwell, vol. 50(2), pages 495-540, May.
    2. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    3. Butler, Marty & Leone, Andrew J. & Willenborg, Michael, 2004. "An empirical analysis of auditor reporting and its association with abnormal accruals," Journal of Accounting and Economics, Elsevier, vol. 37(2), pages 139-165, June.
    4. Mutchler, JF & Hopwood, W & McKeown, JM, 1997. "The influence of contrary information and mitigating factors on audit opinion decisions on bankrupt companies," Journal of Accounting Research, Wiley Blackwell, vol. 35(2), pages 295-310.
    5. Mario A. Cleves, 2002. "From the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit models," Stata Journal, StataCorp LP, vol. 2(3), pages 301-313, August.
    6. Duan, Jin-Chuan & Sun, Jie & Wang, Tao, 2012. "Multiperiod corporate default prediction—A forward intensity approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 191-209.
    7. Mark L. DeFond & K. Raghunandan & K.R. Subramanyam, 2002. "Do Non–Audit Service Fees Impair Auditor Independence? Evidence from Going Concern Audit Opinions," Journal of Accounting Research, Wiley Blackwell, vol. 40(4), pages 1247-1274, September.
    8. Linda A. Myers & Jonathan E. Shipman & Quinn T. Swanquist & Robert L. Whited, 2018. "Measuring the market response to going concern modifications: the importance of disclosure timing," Review of Accounting Studies, Springer, vol. 23(4), pages 1512-1542, December.
    9. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    10. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    11. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    12. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    13. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    14. Chan Li, 2009. "Does Client Importance Affect Auditor Independence at the Office Level? Empirical Evidence from Going†Concern Opinions," Contemporary Accounting Research, John Wiley & Sons, vol. 26(1), pages 201-230, March.
    15. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    16. Kim, Irene & Skinner, Douglas J., 2012. "Measuring securities litigation risk," Journal of Accounting and Economics, Elsevier, vol. 53(1), pages 290-310.
    17. Robert A. Jarrow, 2009. "Credit Risk Models," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 37-68, November.
    18. Linda Myers & Jaime Schmidt & Michael Wilkins, 2014. "An investigation of recent changes in going concern reporting decisions among Big N and non-Big N auditors," Review of Quantitative Finance and Accounting, Springer, vol. 43(1), pages 155-172, July.
    19. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    20. repec:bla:jfinan:v:59:y:2004:i:2:p:831-868 is not listed on IDEAS
    21. Margaret S. Pepe & Gary Longton & Holly Janes, 2009. "Estimation and comparison of receiver operating characteristic curves," Stata Journal, StataCorp LP, vol. 9(1), pages 1-16, March.
    22. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    23. Beaver, Wh, 1968. "Market Prices, Financial Ratios, And Prediction Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 6(2), pages 179-192.
    24. Lennox, Clive, 2000. "Do companies successfully engage in opinion-shopping? Evidence from the UK," Journal of Accounting and Economics, Elsevier, vol. 29(3), pages 321-337, June.
    25. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    26. Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
    27. WILLIAM HOPWOOD & JAMES C. McKEOWN & JANE F. MUTCHLER, 1994. "A Reexamination of Auditor versus Model Accuracy within the Context of the Going†Concern Opinion Decision," Contemporary Accounting Research, John Wiley & Sons, vol. 10(2), pages 409-431, March.
    28. Duan, Jin-Chuan & Van Laere, Elisabeth, 2012. "A public good approach to credit ratings – From concept to reality," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3239-3247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salman Arif & John D. Kepler & Joseph Schroeder & Daniel Taylor, 2022. "Audit process, private information, and insider trading," Review of Accounting Studies, Springer, vol. 27(3), pages 1125-1156, September.
    2. Kasper Regenburg & Morten Nicklas Bigler Seitz, 2021. "Criminals, bankruptcy, and cost of debt," Review of Accounting Studies, Springer, vol. 26(3), pages 1004-1045, September.
    3. Der-Jang Chi & Chien-Chou Chu, 2021. "Artificial Intelligence in Corporate Sustainability: Using LSTM and GRU for Going Concern Prediction," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    4. Ben Lourie & N. Bugra Ozel & Alexander Nekrasov & Chenqi Zhu, 2024. "Consensus credit ratings: a view from banks," Review of Accounting Studies, Springer, vol. 29(3), pages 2391-2436, September.
    5. Camacho-Miñano, María-del-Mar & Muñoz-Izquierdo, Nora & Pincus, Morton & Wellmeyer, Patricia, 2024. "Are key audit matter disclosures useful in assessing the financial distress level of a client firm?," The British Accounting Review, Elsevier, vol. 56(2).
    6. Der-Jang Chi & Zong-De Shen, 2022. "Using Hybrid Artificial Intelligence and Machine Learning Technologies for Sustainability in Going-Concern Prediction," Sustainability, MDPI, vol. 14(3), pages 1-18, February.
    7. Proho Mahir, 2023. "Going concern assessment: a literature review," Journal of Forensic Accounting Profession, Sciendo, vol. 3(2), pages 48-62, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    2. Zhang, Xuan & Zhao, Yang & Yao, Xiao, 2022. "Forecasting corporate default risk in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1054-1070.
    3. Zhang, Xuan & Ouyang, Ruolan & Liu, Ding & Xu, Liao, 2020. "Determinants of corporate default risk in China: The role of financial constraints," Economic Modelling, Elsevier, vol. 92(C), pages 87-98.
    4. Nguyen, Ha, 2023. "An empirical application of Particle Markov Chain Monte Carlo to frailty correlated default models," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 103-121.
    5. Bai, Qing & Tian, Shaonan, 2020. "Innovate or die: Corporate innovation and bankruptcy forecasts," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 88-108.
    6. B Korcan Ak & Patricia M Dechow & Yuan Sun & Annika Yu Wang, 2013. "The use of financial ratio models to help investors predict and interpret significant corporate events," Australian Journal of Management, Australian School of Business, vol. 38(3), pages 553-598, December.
    7. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    8. Evangelos C. Charalambakis & Ian Garrett, 2019. "On corporate financial distress prediction: What can we learn from private firms in a developing economy? Evidence from Greece," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 467-491, February.
    9. William H. Beaver & Stefano Cascino & Maria Correia & Maureen F. McNichols, 2019. "Group Affiliation and Default Prediction," Management Science, INFORMS, vol. 65(8), pages 3559-3584, August.
    10. Ha Nguyen, 2023. "Particle MCMC in forecasting frailty correlated default models with expert opinion," Papers 2304.11586, arXiv.org, revised Aug 2023.
    11. Tomasz Berent & Radosław Rejman, 2021. "Bankruptcy Prediction with a Doubly Stochastic Poisson Forward Intensity Model and Low-Quality Data," Risks, MDPI, vol. 9(12), pages 1-24, December.
    12. Duan, Jin-Chuan & Sun, Jie & Wang, Tao, 2012. "Multiperiod corporate default prediction—A forward intensity approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 191-209.
    13. Cathcart, Lara & Dufour, Alfonso & Rossi, Ludovico & Varotto, Simone, 2020. "The differential impact of leverage on the default risk of small and large firms," Journal of Corporate Finance, Elsevier, vol. 60(C).
    14. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    15. Aggarwal, Nidhi & Singh, Manish K. & Thomas, Susan, 2023. "Do decreases in Distance-to-Default predict rating downgrades?," Economic Modelling, Elsevier, vol. 129(C).
    16. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    17. Anand Deo & Sandeep Juneja, 2021. "Credit Risk: Simple Closed-Form Approximate Maximum Likelihood Estimator," Operations Research, INFORMS, vol. 69(2), pages 361-379, March.
    18. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    19. Paulo V. Carvalho & José D. Curto & Rodrigo Primor, 2022. "Macroeconomic determinants of credit risk: Evidence from the Eurozone," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2054-2072, April.
    20. Vo, D.H. & Pham, B.V.-N. & Pham, T.V.-T. & McAleer, M.J., 2019. "Corporate Financial Distress of Industry Level Listings in an Emerging Market," Econometric Institute Research Papers EI2019-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:reaccs:v:25:y:2020:i:4:d:10.1007_s11142-020-09544-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.