IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v86y2017i3d10.1007_s11134-017-9530-5.html
   My bibliography  Save this article

Strategic customer behavior in a queueing system with a loss subsystem

Author

Listed:
  • Refael Hassin

    (Tel Aviv University)

  • Ran I. Snitkovsky

    (Tel Aviv University)

Abstract

We study a non-cooperative multi-player game of rational customers in a queueing network composed of two unobservable single-server subsystems with different regimes. The first subsystem is a free-shared first-come first-served queue with waiting time affected by congestion. Wishing to avoid congestion, customers may choose to turn to the second subsystem that offers service with no delay. However, reaching the second server is costly and can go unrewarded because requests are blocked when the server is busy. Still, blocked customers do not leave the system empty-handed—they are instantaneously rerouted to the shared queue at the first server. The decision and benefit of each customer depend on the choices of the others, bringing about a symmetric non-cooperative game. After analyzing the queueing characteristics of the system, we show, by properties of the cost function, that a unique symmetric Nash equilibrium exists. Comparing the equilibrium strategy with the socially optimal strategy, we find that, contrary to intuition, customers may choose the loss system more, less or in an equal proportion to what is socially preferred.

Suggested Citation

  • Refael Hassin & Ran I. Snitkovsky, 2017. "Strategic customer behavior in a queueing system with a loss subsystem," Queueing Systems: Theory and Applications, Springer, vol. 86(3), pages 361-387, August.
  • Handle: RePEc:spr:queues:v:86:y:2017:i:3:d:10.1007_s11134-017-9530-5
    DOI: 10.1007/s11134-017-9530-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-017-9530-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-017-9530-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. U. Yechiali & P. Naor, 1971. "Queuing Problems with Heterogeneous Arrivals and Service," Operations Research, INFORMS, vol. 19(3), pages 722-734, June.
    2. Refael Hassin, 1996. "On the Advantage of Being the First Server," Management Science, INFORMS, vol. 42(4), pages 618-623, April.
    3. Refael Hassin & Ricky Roet-Green, 2017. "The Impact of Inspection Cost on Equilibrium, Revenue, and Social Welfare in a Single-Server Queue," Operations Research, INFORMS, vol. 65(3), pages 804-820, June.
    4. Moshe Haviv & Ya'acov Ritov, 1998. "Externalities, Tangible Externalities, and Queue Disciplines," Management Science, INFORMS, vol. 44(6), pages 850-858, June.
    5. Edelson, Noel M & Hildebrand, David K, 1975. "Congestion Tolls for Poisson Queuing Processes," Econometrica, Econometric Society, vol. 43(1), pages 81-92, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghosh, Souvik & Hassin, Refael, 2021. "Inefficiency in stochastic queueing systems with strategic customers," European Journal of Operational Research, Elsevier, vol. 295(1), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassin, Refael & Roet-Green, Ricky, 2018. "Cascade equilibrium strategies in a two-server queueing system with inspection cost," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1014-1026.
    2. Royi Jacobovic, 2022. "Regulation of a single-server queue with customers who dynamically choose their service durations," Queueing Systems: Theory and Applications, Springer, vol. 101(3), pages 245-290, August.
    3. Zhao, Chen & Wang, Zhongbin, 2023. "The impact of line-sitting on a two-server queueing system," European Journal of Operational Research, Elsevier, vol. 308(2), pages 782-800.
    4. Nimrod Dvir & Refael Hassin & Uri Yechiali, 2020. "Strategic behaviour in a tandem queue with alternating server," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 205-244, December.
    5. Tesnim Naceur & Yezekael Hayel, 2020. "Deterministic state-based information disclosure policies and social welfare maximization in strategic queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 303-328, December.
    6. Luyi Yang & Laurens G. Debo & Varun Gupta, 2019. "Search Among Queues Under Quality Differentiation," Management Science, INFORMS, vol. 65(8), pages 3605-3623, August.
    7. Kraig Delana & Nicos Savva & Tolga Tezcan, 2021. "Proactive Customer Service: Operational Benefits and Economic Frictions," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 70-87, 1-2.
    8. Caner Canyakmaz & Tamer Boyaci, 2018. "Opaque queues: Service systems with rationally inattentive customers," ESMT Research Working Papers ESMT-18-04, ESMT European School of Management and Technology.
    9. Czerny, Achim I. & Guo, Pengfei & Hassin, Refael, 2022. "Shall firms withhold exact waiting time information from their customers? A transport example," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 128-142.
    10. Zhongbin Wang & Yunan Liu & Lei Fang, 2022. "Pay to activate service in vacation queues," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2609-2627, June.
    11. Olga Bountali & Antonis Economou, 2019. "Strategic customer behavior in a two-stage batch processing system," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 3-29, October.
    12. Moshe Haviv & Binyamin Oz, 2018. "Self-Regulation of an Unobservable Queue," Management Science, INFORMS, vol. 64(5), pages 2380-2389, May.
    13. Bara Kim & Jeongsim Kim & Yan Su & Chia-Li Wang, 2023. "Proofs of conjectures on the competition between observable and unobservable servers," Queueing Systems: Theory and Applications, Springer, vol. 104(3), pages 211-238, August.
    14. Caner Canyakmaz & Tamer Boyaci, 2018. "Queueing systems with rationally inattentive customers," ESMT Research Working Papers ESMT-18-04_R1, ESMT European School of Management and Technology, revised 01 Oct 2020.
    15. Rouba Ibrahim, 2018. "Sharing delay information in service systems: a literature survey," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 49-79, June.
    16. Opher Baron & Antonis Economou & Athanasia Manou, 2022. "Increasing social welfare with delays: Strategic customers in the M/G/1 orbit queue," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2907-2924, July.
    17. Roei Engel & Refael Hassin, 2017. "Customer equilibrium in a single-server system with virtual and system queues," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 161-180, October.
    18. David Lingenbrink & Krishnamurthy Iyer, 2019. "Optimal Signaling Mechanisms in Unobservable Queues," Operations Research, INFORMS, vol. 67(5), pages 1397-1416, September.
    19. Shiliang Cui & Zhongbin Wang & Luyi Yang, 2020. "The Economics of Line-Sitting," Management Science, INFORMS, vol. 66(1), pages 227-242, January.
    20. Ming Hu & Yang Li & Jianfu Wang, 2018. "Efficient Ignorance: Information Heterogeneity in a Queue," Management Science, INFORMS, vol. 64(6), pages 2650-2671, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:86:y:2017:i:3:d:10.1007_s11134-017-9530-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.