IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v31y2022i6p2609-2627.html
   My bibliography  Save this article

Pay to activate service in vacation queues

Author

Listed:
  • Zhongbin Wang
  • Yunan Liu
  • Lei Fang

Abstract

We study a vacation queueing model where an arriving customer, upon finding the server to be on vacation, is offered an opportunity to pay a fee to instantaneously end the server's vacation, which is referred to as pay‐to‐activate‐service (PTAS). If no one utilizes PTAS, the service will automatically resume when the system's workload reaches a critical level. We investigate customers' equilibrium strategies: (i) joining or balking and (ii) if joining, accepting PTAS or rejecting PTAS, in response to such a mechanism; we show that customers' equilibrium strategies exhibit both avoid‐the‐crowd (ATC) and follow‐the‐crowd (FTC) types of behavior. Our results indicate that the adoption of PTAS is efficient in improving the system performance (e.g., revenue and throughput) when the demand volume is intermediate. We also discover that, upon selecting the appropriate queue‐length information disclosure policy, the service provider has to trade off between collecting a higher revenue through PTAS and improving the system throughput, because revealing the queue‐length information will impact the aforementioned two performance metrics in opposing directions. Finally, we compare our new setting to other common mechanisms including regular vacation queues and pay‐for‐priority queues.

Suggested Citation

  • Zhongbin Wang & Yunan Liu & Lei Fang, 2022. "Pay to activate service in vacation queues," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2609-2627, June.
  • Handle: RePEc:bla:popmgt:v:31:y:2022:i:6:p:2609-2627
    DOI: 10.1111/poms.13705
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13705
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Refael Hassin & Moshe Haviv, 2002. "Nash Equilibrium and Subgame Perfection in Observable Queues," Annals of Operations Research, Springer, vol. 113(1), pages 15-26, July.
    2. David Lingenbrink & Krishnamurthy Iyer, 2019. "Optimal Signaling Mechanisms in Unobservable Queues," Operations Research, INFORMS, vol. 67(5), pages 1397-1416, September.
    3. Naor, P, 1969. "The Regulation of Queue Size by Levying Tolls," Econometrica, Econometric Society, vol. 37(1), pages 15-24, January.
    4. Srinagesh Gavirneni & Vidyadhar G. Kulkarni, 2016. "Self-Selecting Priority Queues with Burr Distributed Waiting Costs," Production and Operations Management, Production and Operations Management Society, vol. 25(6), pages 979-992, June.
    5. Guo, Pengfei & Hassin, Refael, 2012. "Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers," European Journal of Operational Research, Elsevier, vol. 222(2), pages 278-286.
    6. Jacob, Jagan & Roet-Green, Ricky, 2021. "Ride solo or pool: Designing price-service menus for a ride-sharing platform," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1008-1024.
    7. I. Adiri & U. Yechiali, 1974. "Optimal Priority-Purchasing and Pricing Decisions in Nonmonopoly and Monopoly Queues," Operations Research, INFORMS, vol. 22(5), pages 1051-1066, October.
    8. Zhongbin Wang & Jinting Wang, 2019. "Information heterogeneity in a retrial queue: throughput and social welfare maximization," Queueing Systems: Theory and Applications, Springer, vol. 92(1), pages 131-172, June.
    9. Naishuo Tian & Zhe George Zhang, 2006. "Vacation Queueing Models Theory and Applications," International Series in Operations Research and Management Science, Springer, number 978-0-387-33723-4, December.
    10. Refael Hassin & Moshe Haviv, 1997. "Equilibrium Threshold Strategies: The Case of Queues with Priorities," Operations Research, INFORMS, vol. 45(6), pages 966-973, December.
    11. Hassin, Refael & Roet-Green, Ricky, 2018. "Cascade equilibrium strategies in a two-server queueing system with inspection cost," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1014-1026.
    12. Pengfei Guo & Refael Hassin, 2011. "Strategic Behavior and Social Optimization in Markovian Vacation Queues," Operations Research, INFORMS, vol. 59(4), pages 986-997, August.
    13. Jinting Wang & Shiliang Cui & Zhongbin Wang, 2019. "Equilibrium Strategies in M/M/1 Priority Queues with Balking," Production and Operations Management, Production and Operations Management Society, vol. 28(1), pages 43-62, January.
    14. Refael Hassin & Ricky Roet-Green, 2017. "The Impact of Inspection Cost on Equilibrium, Revenue, and Social Welfare in a Single-Server Queue," Operations Research, INFORMS, vol. 65(3), pages 804-820, June.
    15. Naishuo Tian & Zhe George Zhang, 2006. "Applications of Vacation Models," International Series in Operations Research & Management Science, in: Vacation Queueing Models Theory and Applications, chapter 0, pages 343-358, Springer.
    16. Hassin, Refael, 1986. "Consumer Information in Markets with Random Product Quality: The Case of Queues and Balking," Econometrica, Econometric Society, vol. 54(5), pages 1185-1195, September.
    17. Qingying Li & Pengfei Guo & Chung-Lun Li & Jing-Sheng Song, 2016. "Equilibrium Joining Strategies and Optimal Control of a Make-to-Stock Queue," Production and Operations Management, Production and Operations Management Society, vol. 25(9), pages 1513-1527, September.
    18. Ming Hu & Yang Li & Jianfu Wang, 2018. "Efficient Ignorance: Information Heterogeneity in a Queue," Management Science, INFORMS, vol. 64(6), pages 2650-2671, June.
    19. Edelson, Noel M & Hildebrand, David K, 1975. "Congestion Tolls for Poisson Queuing Processes," Econometrica, Econometric Society, vol. 43(1), pages 81-92, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Lei & Li, Yanlin & Govindan, Kannan, 2024. "Entry mode selection for a new entrant of the electric vehicle automaker," European Journal of Operational Research, Elsevier, vol. 313(1), pages 270-280.
    2. Olga Bountali & Apostolos Burnetas & Lerzan Örmeci, 2022. "Join, balk, or jettison? The effect of flexibility and ranking knowledge in systems with batch arrivals," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3505-3524, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Chen & Wang, Zhongbin, 2023. "The impact of line-sitting on a two-server queueing system," European Journal of Operational Research, Elsevier, vol. 308(2), pages 782-800.
    2. Pengfei Guo & Moshe Haviv & Zhenwei Luo & Yulan Wang, 2022. "Optimal queue length information disclosure when service quality is uncertain," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 1912-1927, May.
    3. Wang, Jinting & Zhang, Feng, 2013. "Strategic joining in M/M/1 retrial queues," European Journal of Operational Research, Elsevier, vol. 230(1), pages 76-87.
    4. Opher Baron & Antonis Economou & Athanasia Manou, 2022. "Increasing social welfare with delays: Strategic customers in the M/G/1 orbit queue," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2907-2924, July.
    5. Qingqing Ma & Yiqiang Q. Zhao & Weiqi Liu & Jihong Li, 2019. "Customer Strategic Joining Behavior in Markovian Queues with Working Vacations and Vacation Interruptions Under Bernoulli Schedule," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-26, February.
    6. Tesnim Naceur & Yezekael Hayel, 2020. "Deterministic state-based information disclosure policies and social welfare maximization in strategic queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 303-328, December.
    7. Pengfei Guo & Zhe George Zhang, 2013. "Strategic Queueing Behavior and Its Impact on System Performance in Service Systems with the Congestion-Based Staffing Policy," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 118-131, September.
    8. Luyi Yang & Laurens G. Debo & Varun Gupta, 2019. "Search Among Queues Under Quality Differentiation," Management Science, INFORMS, vol. 65(8), pages 3605-3623, August.
    9. Ziani, Sofiane & Rahmoune, Fazia & Radjef, Mohammed Said, 2015. "Customers’ strategic behavior in batch arrivals M2/M/1 queue," European Journal of Operational Research, Elsevier, vol. 247(3), pages 895-903.
    10. Rouba Ibrahim, 2018. "Sharing delay information in service systems: a literature survey," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 49-79, June.
    11. Hanukov, Gabi & Avinadav, Tal & Chernonog, Tatyana & Yechiali, Uri, 2020. "A service system with perishable products where customers are either fastidious or strategic," International Journal of Production Economics, Elsevier, vol. 228(C).
    12. Sun, Ke, 2024. "Strategic responses to the aggregator platform: Pricing and information sharing," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    13. Zhongbin Wang & Luyi Yang & Shiliang Cui & Jinting Wang, 2021. "In-queue priority purchase: a dynamic game approach," Queueing Systems: Theory and Applications, Springer, vol. 97(3), pages 343-381, April.
    14. Shiliang Cui & Zhongbin Wang & Luyi Yang, 2020. "The Economics of Line-Sitting," Management Science, INFORMS, vol. 66(1), pages 227-242, January.
    15. Gabi Hanukov & Michael Hassoun & Oren Musicant, 2021. "On the Benefits of Providing Timely Information in Ticket Queues with Balking and Calling Times," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
    16. Dimitrios Logothetis & Antonis Economou, 2023. "The impact of information on transportation systems with strategic customers," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2189-2206, July.
    17. Czerny, Achim I. & Guo, Pengfei & Hassin, Refael, 2022. "Shall firms withhold exact waiting time information from their customers? A transport example," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 128-142.
    18. Olga Bountali & Antonis Economou, 2019. "Strategic customer behavior in a two-stage batch processing system," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 3-29, October.
    19. Lan Lu & Zheng Zhu & Pengfei Guo & Qiao‐Chu He, 2022. "Service Operations for Mixed Autonomous Paradigm: Lane Design and Subsidy," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1595-1612, April.
    20. Chamberlain, Jonathan & Simhon, Eran & Starobinski, David, 2021. "Preemptible queues with advance reservations: Strategic behavior and revenue management," European Journal of Operational Research, Elsevier, vol. 293(2), pages 561-578.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:31:y:2022:i:6:p:2609-2627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.