IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i12p5344-5355.html
   My bibliography  Save this article

Dirichlet component regression and its applications to psychiatric data

Author

Listed:
  • Gueorguieva, Ralitza
  • Rosenheck, Robert
  • Zelterman, Daniel

Abstract

We describe a Dirichlet multivariable regression method useful for modeling data representing components as a percentage of a total. This model is motivated by the unmet need in psychiatry and other areas to simultaneously assess the effects of covariates on the relative contributions of different components of a measure. The model is illustrated using the Positive and Negative Syndrome Scale (PANSS) for assessment of schizophrenia symptoms which, like many other metrics in psychiatry, is composed of a sum of scores on several components, each in turn, made up of sums of evaluations on several questions. We simultaneously examine the effects of baseline socio-demographic and co-morbid correlates on all of the components of the total PANSS score of patients from a schizophrenia clinical trial and identify variables associated with increasing or decreasing relative contributions of each component. Several definitions of residuals are provided. Diagnostics include measures of overdispersion, Cook's distance, and a local jackknife influence metric.

Suggested Citation

  • Gueorguieva, Ralitza & Rosenheck, Robert & Zelterman, Daniel, 2008. "Dirichlet component regression and its applications to psychiatric data," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5344-5355, August.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:12:p:5344-5355
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00297-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patricia Espinheira & Silvia Ferrari & Francisco Cribari-Neto, 2008. "On beta regression residuals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(4), pages 407-419.
    2. Espinheira, Patri­cia L. & Ferrari, Silvia L.P. & Cribari-Neto, Francisco, 2008. "Influence diagnostics in beta regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4417-4431, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melo, Tatiane F.N. & Vasconcellos, Klaus L.P. & Lemonte, Artur J., 2009. "Some restriction tests in a new class of regression models for proportions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3972-3979, October.
    2. Tsagris, Michail, 2015. "Regression analysis with compositional data containing zero values," MPRA Paper 67868, University Library of Munich, Germany.
    3. J. Veldwijk & I. P. Smith & S. Oliveri & S. Petrocchi & M. Y. Smith & L. Lanzoni & R. Janssens & I. Huys & G. A. de Wit & C. G. M Groothuis-Oudshoorn, 2024. "Comparing Discrete Choice Experiment with Swing Weighting to Estimate Attribute Relative Importance: A Case Study in Lung Cancer Patient Preferences," Medical Decision Making, , vol. 44(2), pages 203-216, February.
    4. Tsagris, Michail, 2015. "A novel, divergence based, regression for compositional data," MPRA Paper 72769, University Library of Munich, Germany.
    5. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    6. Graziani, Rebecca & NIGRI, ANDREA, 2023. "An Age–Period–Cohort Model in a Dirichlet Framework: A Coherent Causes of Death Estimation," SocArXiv 856yw, Center for Open Science.
    7. Tsagris, Michail & Preston, Simon & T.A. Wood, Andrew, 2016. "Improved classi cation for compositional data using the $\alpha$-transformation," MPRA Paper 67657, University Library of Munich, Germany.
    8. Michail Tsagris & Simon Preston & Andrew T. A. Wood, 2016. "Improved Classification for Compositional Data Using the α-transformation," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 243-261, July.
    9. Jiajia Chen & Xiaoqin Zhang & Shengjia Li, 2017. "Multiple linear regression with compositional response and covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2270-2285, September.
    10. Monique Graf, 2020. "Regression for compositions based on a generalization of the Dirichlet distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 913-936, December.
    11. Jamali, Mehdi & Nejat, Ali & Ghosh, Souparno & Jin, Fang & Cao, Guofeng, 2019. "Social media data and post-disaster recovery," International Journal of Information Management, Elsevier, vol. 44(C), pages 25-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li-Chu Chien, 2011. "Diagnostic plots in beta-regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1607-1622, July.
    2. Ospina, Raydonal & Ferrari, Silvia L.P., 2012. "A general class of zero-or-one inflated beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1609-1623.
    3. Wagner Hugo Bonat & Paulo Justiniano Ribeiro & Walmes Marques Zeviani, 2015. "Likelihood analysis for a class of beta mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 252-266, February.
    4. Zhou, Haiming & Huang, Xianzheng, 2022. "Bayesian beta regression for bounded responses with unknown supports," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    5. Zhao, Weihua & Zhang, Riquan & Huang, Zhensheng & Feng, Jingyan, 2012. "Partially linear single-index beta regression model and score test," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 116-123, January.
    6. Jay Verkuilen & Michael Smithson, 2012. "Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution," Journal of Educational and Behavioral Statistics, , vol. 37(1), pages 82-113, February.
    7. Francisco Cribari-Neto & Sadraque E.F. Lucena, 2015. "Nonnested hypothesis testing in the class of varying dispersion beta regressions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 967-985, May.
    8. Espinheira, Patri­cia L. & Ferrari, Silvia L.P. & Cribari-Neto, Francisco, 2008. "Influence diagnostics in beta regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4417-4431, May.
    9. Tariq Maqsood & Mark Edwards & Ioanna Ioannou & Ioannis Kosmidis & Tiziana Rossetto & Neil Corby, 2016. "Seismic vulnerability functions for Australian buildings by using GEM empirical vulnerability assessment guidelines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1625-1650, February.
    10. Vasconcellos, Klaus L.P. & Zea Fernandez, L.M., 2009. "Influence analysis with homogeneous linear restrictions," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3787-3794, September.
    11. Lemonte, Artur J., 2013. "A new extended Birnbaum–Saunders regression model for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 34-50.
    12. Tariq Maqsood & Mark Edwards & Ioanna Ioannou & Ioannis Kosmidis & Tiziana Rossetto & Neil Corby, 2016. "Seismic vulnerability functions for Australian buildings by using GEM empirical vulnerability assessment guidelines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1625-1650, February.
    13. Anna Serena Vergori & Serena Arima, 2022. "Transport modes and tourism seasonality in Italy: By air or by road?," Tourism Economics, , vol. 28(3), pages 583-598, May.
    14. Patrícia L. Espinheira & Alisson Oliveira Silva, 2020. "Residual and influence analysis to a general class of simplex regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 523-552, June.
    15. Souza, M.A.O. & Migon, H.S. & Pereira, J.B.M., 2018. "Extended dynamic generalized linear models: The two-parameter exponential family," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 164-179.
    16. Terezinha K. A. Ribeiro & Silvia L. P. Ferrari, 2023. "Robust estimation in beta regression via maximum L $$_q$$ q -likelihood," Statistical Papers, Springer, vol. 64(1), pages 321-353, February.
    17. Sarah Appiah & Theodore O. Antwi-Asare & F. K. Agyire-Tettey & Emmanuel Abbey & John K. M. Kuwornu & Steven Cole & Sloans K. Chimatiro, 2021. "Livelihood Vulnerabilities Among Women in Small-Scale Fisheries in Ghana," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(6), pages 1596-1624, December.
    18. Capera-Romero, Laura & Lemus-Esquivel, Juan Sebastián & Estrada, Dairo Ayiber, 2015. "Relaciones crediticias y riesgo de contagio en el mercado interbancario no colateralizado colombiano," Chapters, in: Gómez-González, José Eduardo & Ojeda-Joya, Jair N. (ed.), Política monetaria y estabilidad financiera en economías pequeñas y abiertas, chapter 18, pages 559-616, Banco de la Republica de Colombia.
    19. Artur J. Lemonte & Alexandre G. Patriota, 2011. "Influence diagnostics in Birnbaum--Saunders nonlinear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 871-884, February.
    20. Edilberto Cepeda-Cuervo & Vicente Núñez-Antón, 2013. "Spatial Double Generalized Beta Regression Models," Journal of Educational and Behavioral Statistics, , vol. 38(6), pages 604-628, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:12:p:5344-5355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.