IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v46y2019i15p2845-2861.html
   My bibliography  Save this article

Multivariate Fay-Herriot models for small area estimation with application to household consumption per capita expenditure in Indonesia

Author

Listed:
  • Azka Ubaidillah
  • Khairil Anwar Notodiputro
  • Anang Kurnia
  • I. Wayan Mangku

Abstract

Multivariate Fay-Herriot (MFH) models become popular methods to produce reliable parameter estimates of some related multiple characteristics of interest that are commonly produced from many surveys. This article studies the application of MFH models for estimating household consumption per capita expenditure (HCPE) on food and HCPE of non-food. Both of those associated direct estimates, which are obtained from the National Socioeconomic Surveys conducted regularly by Statistics Indonesia, have a strong correlation. The effects of correlation in MFH models are evaluated by employing a simulation study. The simulation showed that the strength of correlation between variables of interest, instead of the number of domains, plays a prominent role in MFH models. The application showed that MFH models have more efficient than univariate models in terms of standard errors of regression parameter estimates. The roots of mean squared errors (RMSEs) of the estimates obtained from the empirical best linear unbiased prediction (EBLUP) estimators of MFH models are smaller than RMSEs obtained from the direct estimators. Based on MFH model, the HCPE estimates of food by districts in Central Java, Indonesia, are higher than the HCPE estimates of non-food. The average of HCPE estimates of food and non-food in Central Java, Indonesia in 2015 are IDR 383,100.6 and IDR 280,653.6, respectively.

Suggested Citation

  • Azka Ubaidillah & Khairil Anwar Notodiputro & Anang Kurnia & I. Wayan Mangku, 2019. "Multivariate Fay-Herriot models for small area estimation with application to household consumption per capita expenditure in Indonesia," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(15), pages 2845-2861, November.
  • Handle: RePEc:taf:japsta:v:46:y:2019:i:15:p:2845-2861
    DOI: 10.1080/02664763.2019.1615420
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2019.1615420
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2019.1615420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    2. Jan Pablo Burgard & Domingo Morales & Anna-Lena Wölwer, 2022. "Small area estimation of socioeconomic indicators for sampled and unsampled domains," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 287-314, June.
    3. Jan Pablo Burgard & Joscha Krause & Domingo Morales, 2022. "A measurement error Rao–Yu model for regional prevalence estimation over time using uncertain data obtained from dependent survey estimates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 204-234, March.
    4. Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "Robust prediction of domain compositions from uncertain data using isometric logratio transformations in a penalized multivariate Fay–Herriot model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 65-96, February.
    5. María Dolores Esteban & María José Lombardía & Esther López‐Vizcaíno & Domingo Morales & Agustín Pérez, 2022. "Empirical best prediction of small area bivariate parameters," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1699-1727, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:46:y:2019:i:15:p:2845-2861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.