IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i5p963-980.html
   My bibliography  Save this article

Uncertainty under a multivariate nested-error regression model with logarithmic transformation

Author

Listed:
  • Molina, Isabel

Abstract

This work aims to predict exponentials of mixed effects under a multivariate linear regression model with one random factor. Such quantities are of particular interest in prediction problems where the dependent variable is the logarithm of the variable that is the object of inference. Bias-corrected empirical predictors of the target quantities are defined. A second-order approximation for the mean crossed product error of two of these predictors is obtained, where the mean squared error is a particular case. An estimator of the mean crossed product error with second-order bias is proposed. Finally, results are illustrated through an application related to small area estimation.

Suggested Citation

  • Molina, Isabel, 2009. "Uncertainty under a multivariate nested-error regression model with logarithmic transformation," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 963-980, May.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:5:p:963-980
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00205-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    2. Hsiao, Cheng & Appelbe, Trent W. & Dineen, Christopher R., 1993. "A general framework for panel data models with an application to Canadian customer-dialed long distance telephone service," Journal of Econometrics, Elsevier, vol. 59(1-2), pages 63-86, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    2. Forough Karlberg, 2015. "Small area estimation for skewed data in the presence of zeroes," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 541-562, December.
    3. Angelo Moretti & Natalie Shlomo & Joseph W. Sakshaug, 2020. "Multivariate Small Area Estimation of Multidimensional Latent Economic Well‐being Indicators," International Statistical Review, International Statistical Institute, vol. 88(1), pages 1-28, April.
    4. Karlberg Forough, 2015. "Small Area Estimation for Skewed Data in the Presence of Zeroes," Statistics in Transition New Series, Statistics Poland, vol. 16(4), pages 541-562, December.
    5. Forough Karlberg, 2015. "Small Area Estimation For Skewed Data In The Presence Of Zeroes," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 541-562, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    2. Troske, Kenneth R. & Voicu, Alexandru, 2010. "Joint estimation of sequential labor force participation and fertility decisions using Markov chain Monte Carlo techniques," Labour Economics, Elsevier, vol. 17(1), pages 150-169, January.
    3. Cheng Hsiao, 2007. "Panel data analysis—advantages and challenges," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 1-22, May.
    4. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    5. Georges Bresson & Cheng Hsiao & Alain Pirotte, 2011. "Assessing the contribution of R&D to total factor productivity—a Bayesian approach to account for heterogeneity and heteroskedasticity," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 435-452, December.
    6. Jan Pablo Burgard & Ralf Münnich, 2015. "Sae Teaching Using Simulations," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 603-610, December.
    7. N.M. Odhiambo, 2021. "Is Export-Led Growth Hypothesis Still Valid for Sub-Saharan African Countries? New Evidence from Panel Data Analysis," Working Papers AESRI-2021-02, African Economic and Social Research Institute (AESRI), revised Jan 2021.
    8. Sedeño-Noda, A. & González-Dávila, E. & González-Martín, C. & González-Yanes, A., 2009. "Preemptive benchmarking problem: An approach for official statistics in small areas," European Journal of Operational Research, Elsevier, vol. 196(1), pages 360-369, July.
    9. Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
    10. Johannes Gräb & Michael Grimm, 2008. "Spatial inequalities explained - Evidence from Burkina Faso," Ibero America Institute for Econ. Research (IAI) Discussion Papers 173, Ibero-America Institute for Economic Research.
    11. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    12. Molina, Isabel, 2006. "Uncertainty under a multivariate nested-error regression model with logarithmic transformation," DES - Working Papers. Statistics and Econometrics. WS ws066117, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Miguel Boubeta & María José Lombardía & Domingo Morales, 2016. "Empirical best prediction under area-level Poisson mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 548-569, September.
    14. Lixia Diao & David D. Smith & Gauri Sankar Datta & Tapabrata Maiti & Jean D. Opsomer, 2014. "Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay–Herriot Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 497-515, June.
    15. Datta, Gauri S. & Torabi, Mahmoud & Rao, J.N.K. & Liu, Benmei, 2018. "Small area estimation with multiple covariates measured with errors: A nested error linear regression approach of combining multiple surveys," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 49-59.
    16. Nicholas M. Odhiambo, 2021. "Is export-led growth hypothesis still valid for sub-Saharan African countries? New evidence from panel data analysis," European Journal of Management and Business Economics, Emerald Group Publishing Limited, vol. 31(1), pages 77-93, April.
    17. Francis K. C. Hui & Samuel Müller & Alan H. Welsh, 2021. "Random Effects Misspecification Can Have Severe Consequences for Random Effects Inference in Linear Mixed Models," International Statistical Review, International Statistical Institute, vol. 89(1), pages 186-206, April.
    18. Militino, A.F. & Goicoa, T. & Ugarte, M.D., 2012. "Estimating the percentage of food expenditure in small areas using bias-corrected P-spline based estimators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2934-2948.
    19. Enrico Fabrizi & Caterina Giusti & Nicola Salvati & Nikos Tzavidis, 2014. "Mapping average equivalized income using robust small area methods," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 685-701, August.
    20. Torabi, Mahmoud & Rao, J.N.K., 2013. "Estimation of mean squared error of model-based estimators of small area means under a nested error linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 76-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:5:p:963-980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.